Republic of Yemen

Emirates International University

Engineering and IT Faculty

Dep _ Oil and Gas Engineering

الجمهورية اليمنية الجامعة الاماراتية الدولية كلية الهندسة وتقنية المعلومات قسم هندسه النفط والغاز

FACULIY OF ENGINEEERING AN INFORMATION TECHNOLOGY OIL AND GA ENGINEERING DEPARTMENT

PERFORMANCE EVALUATION OF THE FIELD AND DIAGNOSES EXCESSIVE WATER PRODUCTION FROM SHARYOOF FIELD (BLOCK 53)

A PROJECT SUBMITTED IN PARTIAL FUFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE
OF BACHELOR OF SCIENCEIN OIL
AND GAS ENGINEERING

BY:

ABDULLAH AL-ZOBA

- FAIZ AL-SARETI

- RAMZY FADEL

- ABDULLRAHMAN

- JOBRAN JRAWSH

AHMED AL-SHIBLY

SUPERVISOR DR YASIN SALEH

SANA'A AUGUST,2021

DECLARATION

We Hereby declare that this project report is the record of authentic work carried out by us and has not been sub ted to any other university or institute for the award of any degree / diploma etc .

APPROVAL

Inis is to certify that	the project titled periorman	ce Evaluation	on of the field
and Diagnoses Ex	cessive Water Production	n in Sharyo	of Oil Filed (
Block 53) has been	read and approved for meetin	g part of the	requirements and
regulations governing of	the award of the Bachelor of En	ngineering (Oi	l and Gas) degree Emirates.
International	University,	Sana'a,	Yemen.
Project Superviso	or: DR. Yasin Al-Salehi	D	ate:
•••••			
		Signature:	

Abstract

Excessive water production is one of the major problems in Yemenis oil fields. The main purpose of this project is to diagnose the excessive water production mechanisms as case of a Sharyoof oil field. The Production history plot evaluate production performance during all time of production. The diagnostic plots derivative method is applied using Oil Field Manager program on calculating and plotting the derivative response to understand the mechanisms that create the problem, considering three examples of a Yemenis oil well's data. As a result of this research, water channeling is the main reason for water production in three wells, and conning has important effect in increase water production.

ACKNOWLEDGMENTS

First of all, we owe our most sincere gratitude to Allah the almighty and the most powerful for offering us such a strength, endurance, willingness, and capability to accomplish this project.

We would also like to express our deep and sincere gratitude to our supervisor,

Dr. Yasin Al-Salehi, for his valuable and constructive suggestions during the planning and development of this research work and his wide knowledge and his logical way of thinking that have been of great value for us. His willingness to give his time so generously has been very much appreciated. His feedback, support, encouraging and personal guidance have provided a good basis for the present project. Our special gratitude is due to all those who have helped in carrying out the research and contributed in any way for the success of this Project.

Finally, yet importantly, we would like to express our heartfelt thanks to our beloved family for their blessings, our friends/classmates for their help and wishes for the successful completion of this project.

Contents

DECLARATION	i
APPROVAL	ii
Abstract	iii
ACKNOWLEDGMENTS	iv
Contents	V
List of figures	viii
List of Symbols and Abbreviation	ix
CHAPTER1	
1.1.Introduction	1
1.2.Geology of Yemen	2
1.2.1 Stratigraphy of Yemen:	
1.2.1.1 Paleozoic area:	
1. 2.1.3 Cenozoic era	
1.3.Masila basin:	
1.4.Overview of Block – 53	10
1.5.AREA OF THE STUDY (Sharyoof Oilfield)	
1.5.1 Sharyoof reservoir characteristics	· 11
1.6. Problem Statement	12
1.7. The Objectives of the Project:	12
CHAPTER 2	13
2.1 INTRODUCTION :	
2.2 Types of Water Production:	13
2.3 Sources of Unwanted (Excessive) Water Production:	14
2.3.1 Casing, Tubing, Packer Leaks:	14
2.3.2 Channel Flow Behind Casing:	· 14

2.3.3Moving Oil-Water Contact:	
2.3.4 Watered Out Layer Without Cross Flow:	- 15
2.3.7 Coning:	- 17
2.3.8 Poor Areal Swipe:	- 17
2.3.9 Gravity-Segregated Layer:	- 18
2.3.10 Watered-Out Layer With Cross-Flow:	- 18
2.4 Identifying the Problem:	- 19
2.4.1 RESERVOIR PERFORMANCE PLOTS AND ANALYSIS FOR WATER	
PRODUCTION:	- 19
2.4.1.1 Production history plot	- 20
2.4.1.2 LOG OF WATER CUT OR OIL CUT VERSUS CUMULATIVE	
PRODUCTION	
2.4.1.3 HALL AND HEARN PLOT FOR INJECTORS	- 22
2.4.1.4DIAGNOSTIC PLOTs	- 23
2.5 Water Shutoff Operations and Techniques :	- 27
2.5.1 Chemical Solutions:	
2.5.1.1 Gel	
2.5.1.2 Polymer Flooding	
2.5.2 Mechanical Solutions:	- 29
2.5.2.1 Plugs and Packers :	- 29
CHAPTER 3	- 33
3.1. Introduction:	- 33
3.2. Type of Data Required to Implement Project	- 33
3.3 FIELD PRODUCTION PERFORMANCE EVALUATION	
3.4 FIELD PRODUCTION DATA DIAGNOSTIC PLOT	- 33
3.5 Software To Be Used	
3.6 Anticipated Results:	- 34
CHAPTER 4	- 35
4.0 RESULTS AND DISCUSSION OF RESULTS	- 35
4.1 ANALYSIS OF FIELD OIL RATE AND WATER RATE PLOTS	- 35
	_ 36

PERFORMANCE:	
4.3 Water coning:	40
4.3.1 Reasons of Water Coning	40
4.4 Channeling	41
4.5 Solutions for the problems:	41
4.5.1 solution of coning by Squeeze cement	41
4.5.2 Solution of channeling by polymer:	41
CHAPTER 5	43
5.0 CONCLUSIONS AND RECOMMENDATIONS	
5.1 SUMMARY AND CONCLUSIONS	43
5.2 RECOMMENDATIONS	
5.3 Limitations of our project	44
REFERENCES	45
Appendix	49

List of figures

Figure.1.1 sedimentary basins of Yemen and their classification 3
Figure 1.2 Stratigraphic column of Yemen 8
Figure 1.3 stratigraphic column in Masila Basin9
Figure 2.1 Bad Water vs. Good Water (Bailey et al, 2000) 13
Figure 2.13 An example production history plot 20
Fig 2.14 Production plot showing log of water cut versus cumulative oil
production (Satter and Thakur, 1994) 21
Fig 2.15 Production plot showing log of oil cut versus cumulative oil
production (Satter and Thakur, 1994) 21
Fig 2.17 The Hearn Plot (Jarrel and Stein, 1991) 23
Fig 2.18 Water coning and channelling WOR comparison. Chan (1995) 24
Fig 2.19 Multi-layer channelling WOR and WOR derivatives. Chan (1995)
25
Fig 2.20 Bottom-water coning WOR and WOR derivatives. Chan (1995) 25
Fig 2.21: Bottom water coning with late time channelling. Chan (1995) 26
Figure 2.23 Two packers above and below a blank pipe to shut off the
production of water from the middle and upper intervals without
compromising other oil production zones 31
Figure 2.24 Two packers above and below a blank pipe to avoid injecting
the water in open features or high permeability layers 32
2. 5.2.2 Tubing Patches: 32
Fig 4.1: field production rate versus time 36
2.3.5 Fractures Or Faults Between Injector And 16
2.3.6 Fracture Of Faults From A Water Layer: 16
Fig 2.16 The Hall Plot (Jarrel and Stein, 1991) 22
Fig 4.2 : Well production rate versus time (Well 002) 36
Fig 4.3: Well production rate versus time (Well 009) 37
Fig 4.4: Well production rate versus time (Well 023) 37
Fig 4.6: Well Diagnostic Plot (Well 0.09) 39
Fig 4.7: Well Diagnostic Plot (Well 0.23) 39
Fig4.8 Schematic of water coning into a well 40

List of Symbols and Abbreviation

•	
DNO	Distribution network operator
WOR	water/oil ratio
WPM	water production mechanism
FPP	formation parting pressure
PAM	Polyacrylamide
HPAM	hydrolyzed polyacrylamide
OFM	OIL FIELD MANAGER
OD	Out diameter
ESP	Electric submersible pump

1.1 Introduction

Excessive water production is one of the common and challenging problems associated with hydrocarbon production. Reservoir rocks normally contain both petroleum hydrocarbons and connate water. Once the production starts, this water called connate water is also produced into the wellbore comingled with oil. In addition to the connate water contained in reservoir rocks, many petroleum reservoirs are bounded by or are adjacent to large aquifers. These aquifers can provide the natural drive for petroleum production. Once the aquifer pressure is depleted, additional water is also injected into the reservoir to provide further pressure to the hydrocarbon reserves to move towards the production wells. Water from these various sources can flow into the wellbore and co-produced with the hydrocarbon stream. Such water is referred to as produced water. The ratio of produced water to the produced oil is denoted as WOR (water/oil ratio). The WOR economic limit is where the cost of handling and disposal of the produced water approaches the value of the produced oil. The water produced in to the well bore comingled with oil at an economic water/oil (WOR) ratio is an accepted fact in the oil industry as it cannot be reduced or shut off without affecting the oil production. Problems arise when water flows in to the oil well at a rate exceeding the economic WOR limit, producing little or no oil. The cost of handling and disposing this unwanted water could have a negative impact on the economic life of the oil well. It is estimated that on average oil companies produce three barrels of water for each barrel of oil, which entails a staggering cost of US\$ 30-40 billion worldwide . In addition to the direct cost of handling the produced water, it also has negative impacts on the overall productivity rates. Excessive water production reduces the net oil production rate, increases corrosion rates in the production system and may eventually lead to early abandonment of the affected wells. The environmental issues in connection with water production are another concern for oil companies. They have to comply with strict environmental regulations regarding water treatment and disposal facilities, which consequently increases production costs. Water is produced in to the well due to many different causes. Water production can be related to mechanical problems, poor completion procedures or reservoir conditions. The main obstacle in the management of water production studies is the correct diagnosis of the nature and the origin of the problems. Each problem type requires a different approach to control and treat the problem effectively. In reality, an oil well can experience a combination of different problem types. However, reservoir related problems of coning and channelling through high permeability layers are more challenging to diagnose and treat. The mechanism and the volume of the water produced into a wellbore mainly depends on petrophysical properties, pressure and temperature conditions of the reservoir, geometry and conditions of the aquifers, trajectory and location of the drilled wells within reservoir structure, type of completion and stimulation methods. Depending on the characteristics of the reservoir, type of the diagnosed problem and objectives of the water production

treatment, a variety of mechanical, chemical and well construction techniques can be applied to stop or reduce the flow of water into the wellbore. However, the water production mechanism (WPM) must be properly investigated and accurately diagnosed in order to design an appropriate and effective treatment method. Incorrect, inadequate, or lack of proper diagnosis usually leads to ineffective water control treatments. Several analytical and empirical techniques using information such as production data, water/oil ratio and logging measurements have been developed to determine the type of water production problem, locating the water entry point in the well and choosing the candidate wells to perform treatment methods. Water/oil ratio diagnostic plots are probably the most widely used technique in reservoir performance studies. Many oil companies to date rely on log/log plots of WOR and its derivative against time to identify WPMs caused by water coning or channeling.

1.2.Geology of Yemen

Yemen, officially known as the Republic of Yemen, is an Arab country in Western Asia, occupying South Arabia, the southern end of the Arabian Peninsula. Yemen is the second-largest country in the peninsula, occupying 555000 sq km. The coastline stretches for about 2,200 km. It is bordered by Saudi Arabia to the north, the Red Sea to the west, the Gulf of Aden and Arabian Sea to the south, and Oman to the east.

The country of Yemen is in the Asia continent and the latitude and longitude for the .country are 12° - 18° N, 42°-53° E

Sedimentary basins of Yemen and their classification according to the geologic area in which they formed.

Paleozoic basins:

- 1. Rub" Al-Khali (the southern flank of a much larger basin extending into Saudi Arabia.
- 2.Sana'a.
- 3. Sugatra (an island in the Gulf of Aden).

Mesozoic basins

- 4 .Siham-Ad-Dali .
- 5 .Sab"atayn .
- 6.Say"un-Masilah.
- 7. Balhaf.
- 8. Jiza"-Qamar .

Cenozoic basins:

- 9. Mukalla-Sayhut.
- 10 .Hawrah-Ahwar.
- 11 .Aden-Abyan .
- 12. Tihamah [Journal Of GEO_ExPro_V13i2] .

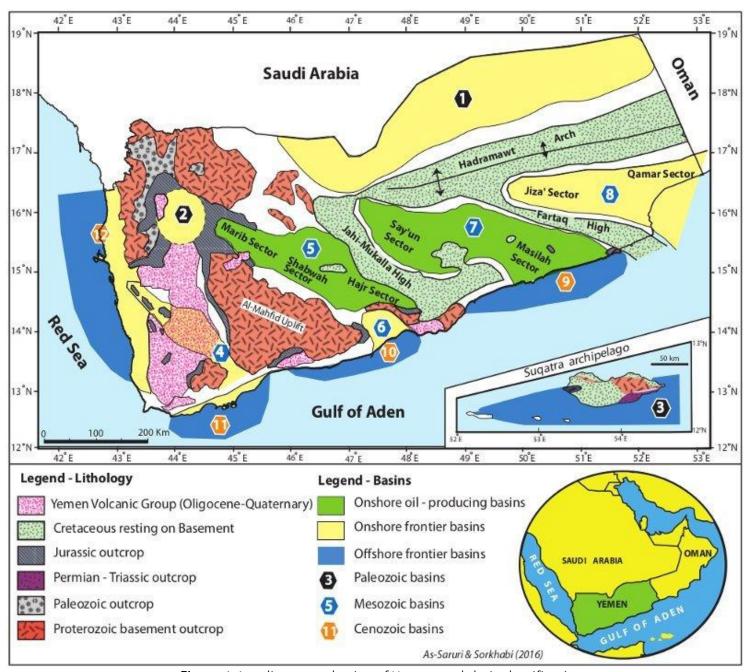


Figure.1.1 sedimentary basins of Yemen and their classification

1.2.1 Stratigraphy of Yemen:

1. 2.1.1 Paleozoic area:

Wajid Formation:

The Wajid Sandstone, of probable Early Paleozoic age, rests non conformably on crystalline rocks of the southern part of the Arabian shield and considered the oldest formation in the region. The Wajid Sandstone is extensively described from southern Saudi Arabia, because it is widely exposed there. Wajid sandstone deposits from Saudi Arabia into northern Yemen cover a wide area north of Sa'dah and east and north of AlJawf area. The southern boundary east of Al-Jawf province is a fault while some remnant hills exist in small isolated grabens west of the Sa'dah depression. No specific reference section was selected but in Jabal Dal'an, north of Sa'dah, the formation exceeds 200m in thickness.

Akbarah Formation:

Akbarah formation (Late Carboniferous-Permian): tillite (pebbles & boulders of basement rocks), shales, mudstones, sandstones and siltstones. At the Kuhlan Village section, the Akbarah Formation is in two parts. The lower part is composed of thick sandstone beds fining upwards to siltstone and thick fissile shale. These units are interbedded with massive and stratified diamictite beds. The upper part is composed of several cycles beginning with beds of thin, fine-grained sandstone fining upwards to thick fissile shale beds, interpreted to be of marine origin (Stephenson & Kader AlMashaikie, 2011). The depositional environment of the Akbarah Shale is thought to be lacustrine or fluvio-glacial.

1.2.1.2 Mesozoic area.

Kuhlan Formation:

In early to mid-Jurassic time sandstone was deposited widely across Yemen, where thick sedimentation developed in lows formed before Jurassic time. It is a transgressive clastic sequence found throughout the basin as localized erosional remnants this thick sandstone deposit is known as the Kuhlan Formation and it is composed of siltstone and sandstone to conglomerate with some streaks of limestone and green clay. In Masila oil fields the sandstone of the Kuhlan Formation is very fine to medium grained, well sorted with good to poor porosity. Sediments within the Kuhlan Formation were deposited during the transgression of the sea over the exposed and eroded igneous and metamorphic basement complex. Clastic sediments in this unit were deposited by subaerial to shallow water, near shore processes.

Shuqra Formation: (Amran Group).

This formation was considered as representing a part from the Jurassic outcrops and had been referenced to as "Amran Series" by (1925) and Lamare (1930). The recorded type section of this formation was measured by Wetzel and Morton (1950) at Jabal Urays and lies at a distance 15 km N17°E of Shuqra City which is located on the Coast of Aden Gulf. They measured 98m of dark gray well-bedded limestone. It is Lithological composed of carbonate marl/shale, and depositional environment is shallow marine of the platform and of pre-rift areas. Formation is exposed in wide geographic areas in the northern, western, and southern parts of Yemen with variable thickness due to erosion.

Madbi Formation: (Amran Group).

The age of Madbi formation can be regarded as early Kimmeridgian to Middle Tithonian. This formation was described as a part of Jurassic outcrops as "Amran Series". It was described as Madbi formation by with thickness 240m. The type section measured at Jabal Madbi, Shabwah Province, was found to be conformably underlain by Shuqra formation and overlain by either the Tawilah Group in some places or Nayfa formation in the others. This formation is divided into two members. The lower part of this formation is commonly argillaceous lime and basal sand, and forms a good reservoir in some oil fields of the Masila basin. The upper part of Madbi formation is composed of laminated organic rich shale. The lithofaces of this unit reflects open marine environments. The Upper Jurassic organic rich shales of the Madbi formation are considered to be the most prolific oil prone source rock in the basin.

Nayfa Formation: (Amran Group).

The age of the Nayfa formation is between late Tithonian to the Berriasian (Lowermost Cretaceous). Nayfa formation consists predominately of Limestone slightly dolomitic, slightly argillaceous interbedded with minor Dolomite and Shale. In subsurface exploration drilling boreholes, the Nayfa formation was encountered in all the main Yemeni rifted basins. The deposition of the Nayfa formation took place during a new phase of transgression probably associated with the erosion of the marginal barriers that were present during Madbi times that resulted in partial reintroduction of open-marine sedimentation into Sab'atayn and Say'un-Masila basins. The Nayfa formation can be considered as a potential source interval for post rift reservoir.

Saar Formation:

This deposit conformably overlies the Nayfa formation and is composed mainly of limestone, dolomitic limestone with some mudstone, and sandstone. Oil companies classified this formation into lower Saar carbonate and upper Saar clastic. Early Cretaceous syn rift carbonates and clastics of the Saar formation were deposited within the rift in eastern Yemen particularly in Qamar basin whilst thin carbonates

were deposited outside the basin. Saar formation is shallow marine deposits environment due to marine transgression.

Qishn Formation: (Tawilah Group).

This is the lowest formation for the Mahra group. Its type section lies in the Mahra at Ras Sharwayn, near Qishn. A reference section for this formation in the western regions was designated at Jabal Rays near Al Mukalla. At its type section, the Qishn formation consists of 411m of fossiliferous limestone with marl interbeds. In the western regions, the reference section of the present formation attains a thickness of about 32m. The sequence includes a basal conglomeratic sandstone this is followed by marl and fossiliferous, sandy, shaly, massive to well bedded limestone. Its lower contact with the Precambrian basement or with the Upper Jurassic rocks is unconformable, whereas its upper contact with the Harshiyat formation is conformable.

Harshiyat Formation: (Tawilah Group).

Harshiyat formation is represented in both the eastern and western parts of the southern provinces of Yemen. A reference section for the Harshiyat formation in the eastern parts was designated in Mahra and Masila, Tihayr area. In its type area the present rock unit consists of 293m of fine to coarse, ferruginous, calcareous, friable to hard, well bedded to massive, current-bedded sandstones with siltstone, shale, marl, dolomitic limestone, and recrystallized, fossiliferous limestone interbeds. This formation extends conformably between the underlying Qishn formation, and the overlying Mukalla formation.

Fartag Formation: (Tawilah Group).

The occurrence of the Fartaq formation is restricted to the eastern regions of the southern provinces. It is a limestone-marl lateral equivalent of the upper horizons of the Harshiyat clastics of the western regions. Its stratotype lies at Ras Fartaq, Mahra (lat. 15° 59' N, long. 52° 09' E), where it consists of 510m of fossiliferous limestone and marl with a basal shale bed. This formation is conformably underlain by the Qishn for mation, and overlain by the Mukalla formation. The Fartaq formation has yielded a rich assemblage of fossils which dates it as Albian to Cenomanian, to probable Turonian. The formation is divisible into three distinct units which were treated as members. These are in ascending order the DhaSohis, Tihayr, and Maqrat members.

Mukalla Formation: (Tawilah Group).

It is the only formation which persists in the two parts without significant changes in the lithic characteristics. The stratotype lies in the western parts, in Mukalla, at Jabal Al-Rays (lat. 14° 35' N, long. 49° 08 E). The stratotype consists of 165m of colored, fine- to coarse-pebbly, current-bedded, friable to hard sandstones with marl and siltstone interbeds. The current-bedded sandstones represent fluvio-deltaic sediments which are barren of marine fossils. The Mukalla formation thickens

westwards. It conformably overlies the Harshiyat formation and unconformity underlies the Umm err Radhuma formation. It conformably overlies the Harshiyat Formation and unconformity underlies the Umm err Radhuma formation.

Sharwayn Formation: (Tawilah Group).

The formation has yielded numerous fossils which date it as Maastrichtian. The Sharwayn formation is the top formation of the Mahra group in the eastern parts of the southern provinces. The formation grades westwards from limestone, through marl and limestone, to marl, sequence. It is conformably underlain by the Mukalla formation, and overlain by the Umm ERR Radhuma formation with probable disconformity.

1.2.1.3 Cenozoic era.

2.1.3.1 Umm Err Radhuma Formation: (Hadramawt Group). The lowermost Umm Err Radhuma formation of Paleocene - Lower Eocene age comprises shallow marine limestones, shales, marls and evaporates with thicknesses that vary from 200m to 700m. The basal Umm Err Radhuma formation contains reworked Maastrichtian fossils indicating a break in sedimentation between the Cretaceous and Tertiary in the east.

Jeza Formation: (Hadramawt Group).

The Jeza formation overlies the Umm Err Radhuma formation conformably with either a gradational or a sharp contact, e.g. east Yemen. It consists of calcareous paper shales and well-bedded fine-grained limestones. To the east the sequence gives way to wake stones and calcareous mudstones. Thicknesses increase to the south from approximately 50m to the northeast to less than 150m north of the Wadi Hadramout.

Rus Formation: (Hadramawt Group).

The Rus formation has gradational and conformable contacts with the underlying Jeza formation, and comprises bedded gypsum and anhydrite with bands of chert, marl, gypsiferous chalk, dolomitic limestone and siliceous diatoms. Thicknesses are around 50m reaching 200m north of Wadi Saqhawat and less than 400m in the west Mukalla area.

Habshiyah Formation: (Hadramawt Group).

The Habshiyah formation, which is about 175m in thickness and overlies the Rus formation, consists of paper shales and chalky limestone.

Shihr Group:

The Shihr group is considered early to middle Oligocene in age. The Shihr group is a transgressive series laid down in coastal embayments and tectonic depressions after emergence of the land surface at the end of the Eocene Epoch. The group consists of limestone, marl, shale, and gypsum, and rests on a variety of older formations.

The group is not represented in the west and west north of Yemen due to high topography in this part or maybe deposited as thin beds and then eroded. The thickness of this group is variable but not less than 60m and not more than 450m. The depositional environment of Shihr group includes estuarine continental and marine [M. Albaroot].

The Habshiyah formation, which is about 175m in thickness and overlies the Rus formation, consists of paper shales and chalky limestone.

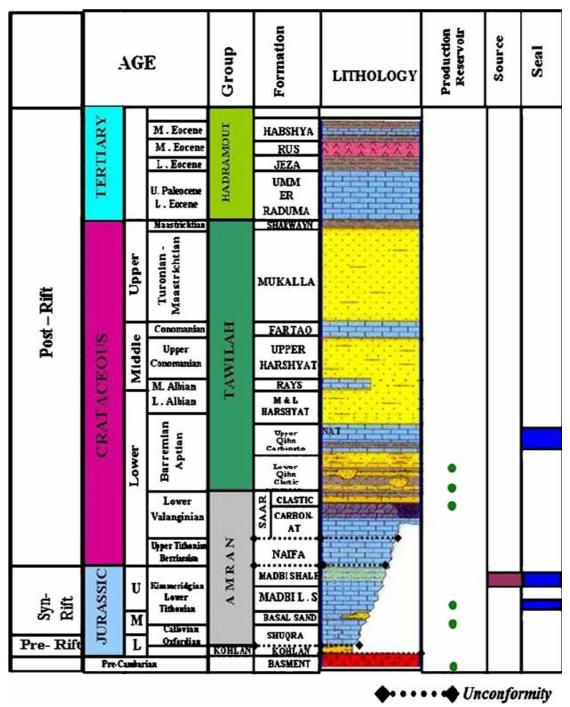


Figure 1.2 Stratigraphic column of Yemen

1.3. Masila basin:

Masila Basin is one of the main petroleum basins in Yemen, which is located in the east part of Yemen. Masila Basin is considered as an oil-rich province in Yemen and contains several, well known oilfields.

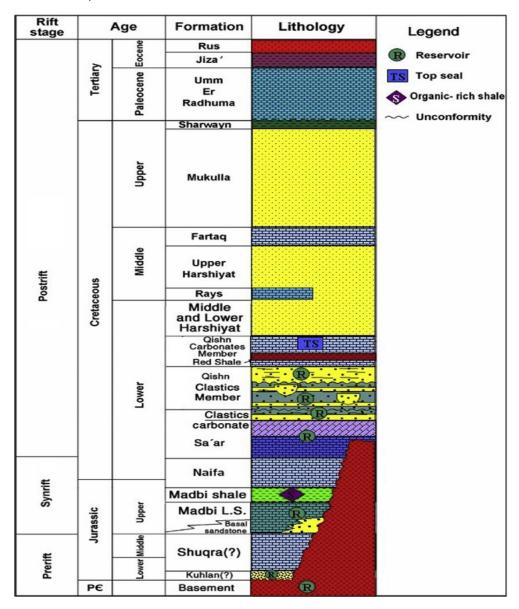


Figure 1.3 stratigraphic column in Masila Basin

However, several studies have been performed on the potential source rocks in the Masila Basin, the main source rock in the Masila Basin is Late Jurassic Madbi Formation, which is mainly composited of black calcareous shales with high TOC more than 8%. The Madbi black calcareous shales contain mainly Type I/II kerogens with a minor contribution of kerogen Type II/III.

The Madbi source rock was deposited in a marine environment under suboxic conditions. Masila Basin is one of the Mesozoic sedimentary basins of Yemen, and located in the eastern of Yemen. The Masila Basin is a rift-basin and was initially formed as a result of the Mesozoic breakup of Gondwanaland and the evolution of the Indian Ocean during the Late Jurassic to Early Cretaceous. The Masila Basin also

developed during the Oligocene– Middle Miocene time as a result of the opening of the Red Sea and the Gulf of Aden during the Tertiary rifting tectonic event. However, these rifting tectonic events formed several normal faults. The main structures in the Masila Basin are characterized by horst, tilted fault blocks, which are considered as a main structural trap for the hydrocarbon accumulations in Masila oilfields.

1.4.Overview of Block – 53

Block (53) Exist on the North of Saywon Masila Basin between three production block which are block (32) Tasour field from East side, block (10) Kharir field from west side and block (14) Sunah field from South East side. There are three field in block 53

- Sharyoof Oilfield

The Sharyoof oilfield is one of the most productive oilfields in the Masila Basin, located in the N/W sector of the Masila Basin, with area of 474 km2. The Sharyoof oilfield is also located between several successful producing oil fields: The Sunah oilfield to the southeast, the Kharir oilfield to the west, and the Tasour oil discovery to the east .

- Hekma Field

Is the smallest field in block-53, It's structure located on prospective Basemen-Madbi trend between Sunah Field on block-14 some 14 Km to southwest it has one producing well Hekma-1, Which was drilled to a TD of 3715 m in the Basement

- Bayoot Field

The Bayoot oilfield is one of the most productive oil fields in the Masila Basin, located in the N/W sector from the Masila Basin. Bayoot oilfield is also boarded with several successful producing oilfields such as Sharyoof, Sunah, Wadi Taribah, Kharir and Tasour oilfields. The production Bayoot field is started in 2006, the Number of wells have been drilled is 14 well, 9 wells are production wells. The reservoir rock in Bayoot field is basement rocks. The field was operated by Dove company but now is under Petromasila company.

1.5.AREA OF THE STUDY (Sharyoof Oilfield)

The Sharyoof oilfield is one of the most productive oilfields in the Masila Basin, located in the N/W sector of the Masila Basin, with area of 474 km2. The Sharyoof oilfield is also located between several successful producing oil fields: The Sunah oilfield to the southeast, the Kharir oilfield to the west, and the Tasour oil discovery to the east which is currently under development. The first well here, Rudood-I, was drilled in 1999 by the DNO Petroleum Company to a depth of about 2179 m. There followed wells Sharyoof-1 (TD 1765 m) and Sharyoof-2 (TD 1630 m) which targeted the Cretaceous units. The structure types in the Sharyoof oilfield are characterized by horst, tilted fault blocks. These structures were formed during late Jurassicearly Cretaceous and developed during Oligocene–Middle Miocene time as a result of

opening of the Red Sea and the Gulf of Aden during the Tertiary rifting tectonic event. The Sharyoof oilfield con tains sedimentary rocks ranging from Jurassic to Tertiary in age, including Saar Formation. The early Cretaceous Qishn Formation is an important hydrocarbon (oil) reservoir in the Sharyoof oilfield (DNO Oil Company, 1999 personal communication). Based on operating oil companies' unpublished data (DNO Oil Company, 1999 personal communication). The productivity varies significantly within the Pre-Cambrian/Archean grantic basement, lower Cretaceous Saar Formation carbonates, and middle Cretaceous Qishn Formation clastic deposits.

1.5.1 Sharyoof reservoir characteristics. Upper Qishn Formation Clastics:

The primary appraisal objective for this well is the Lower Cretaceous Upper Qishn Formation Clastics that are regionally widespread and have been encountered in all nearby wells. In block 53 area the Upper Qishn Formation Clastics have been subdivided into 3 units: the S1 (top), S2 (middle) and S3 (base). The S1 is divided into three sub units S1C, S1B and S1A (Putnnam et al 1997). The upper S1A unit comprises good quality reservoir sand (Sharyoof-1 average porosity 18.4%, NTG 85%), and are between 8 to 15 meters thick in Block 53. The underlying S1B comprises of non-reservoir, possibly sealing carbonates and mudstones. The basal S1C comprises of poor quality reservoir sands and shales. The S1 sands provide the main reservoir in the region, including Tasour, Kharir, Sunah and Camaal fields. It also tested oil in the Sharyoof-1 discovery well, producing at a rate of 4900 BOPD during an ESP cased hole production test. The best quality S1A sands are understood to have been deposited in a marine near shore environment (eg. sub-tidal shoals) sand passes eastwards into poor quality muddy offshore deposits and westwards into variable quality estuarine and fluvial deposits. Evidence from the presence of poorer quality S1A sands in Rudood-1 (14% average porosity) suggests there was a lateral facies shift to lagoonal and/or estuarine conditions. The S2 and S3 sands form a estuarine and fluvial sand package, with diffuse boundary between the two. The combined thickness varies between 40 and 80 meters in Block 53 and is expected to be 80 meters in the Sharyoof area. Net to gross ranges between 60 to 80% and porosity between 18 and 20% in the Sharyoof area.

Saar Formation:

Dolomites and Clastics Saar Formation dolomites are several hundred meters thick in Tasour-1, thinning onto adjacent fault highs and also thinning to the west (56 meters in Rudood-1, 30 meters in Kharir-3). NTG is likely to be near 100% in the Tasour area, but porosity is expected to be around 10%. The Saar Formation was not included as a possible reservoir in Sharyoof-2. The well program intended 50 m to be drilled to leave sufficient rathole for logging the primary Qishn.

Cap Rock:

It is a unit with low permeability that impedes the escape of hydrocarbons from the reservoir rock

Common seals include:

Evaporates.

Chalks.

Shale.

Seal Potential:

The seal for the Upper Qishn Formation Clastics is the overlying Qishn Formation Carbonate. The Sharyoof-1, Tasour-1, Rudood-1 and Hekma West-1 wells all penetrated in excess of 110 meters of micritic limestone with shaley interbeds, including the Red Shale. The throws on the faults associated with the Sharyoof structure do not exceed the likely Qishn Formation Carbonate thickness, and thus trap integrity is likely to be maintained. In the Tasour-1 well the S1 sand was underlain by limestone which could act as a base seal to the S1 as well as top seal to S2 reservoir. Saar Formation Dolomites and Clastics are likely to be overlain by Saar Formation limestone, which in Tasour-1 provided a top seal [DBDP].

1.6. Problem Statement

The major problems of produced water are the high cost and the environmental risk; which are un-ignorable and in some cases may be the major concerns. The water treating cost for different purposes may considered low, but when compared with huge volumes of the produced water the overall cost will totally risk the economic feasibility of the field. In the other hand, the chemical compositions of the produced water contamination have made many troubles to the surrounding area (e.g. affecting the fresh water sources, damaging the plants and wild life). Although many efforts were made for treating water to meet the standards and the minimum environmental safety for handling, the current work specially diagnoses water production and analyze the control techniques in Sharyoof oilfield.

1.7. The Objectives of the Project:

- 1. To study Sharyoof field in terms production.
- 2. To understand reservoir drive mechanism in the field
- 3. To determine the source of water production and conducting initial diagnosis for water production mechanisms in Sharyoof field for different producing wells.
- 4. Analyse the performance of a reservoir is by use of quicker and cheaper way
- 5. Select suitable methods for solving the problem of excessive water production.

Chapter 2

2.1 Introduction:

All oil wells producing water at their life, it comes from the aquifers as a natural drive or even a water flood. However, the water becomes a problem (Excess) when it bypasses the oil and lead to unrecovered accumulations. Generally, the produced water can be categorized into sweep, Good and bad water

2.2 Types of Water Production:

A. Sweep Water

Sweep water comes from either an injection well or an active aquifer that is contributing to the sweeping of oil from the reservoir. The management of this water is a vital part of reservoir management and can be a determining factor in well productivity and the ultimate reserves. When the water cut is great and the oil production revenues are not handling the water treatment cost, the water is called "Bad Water".

B. Good Water:

it's the water that cannot be shut off without losing the oil reserves, its happened when the oil and water flow through the porous media as part of the oil's fractional flow characteristics, as long as the water/oil ratio is below the economical limit the could be considered as a good water.

C. Bad Water:

It is referred specially to the water flow separately into the wellbore and producing no oil or below the well water/oil ratio economic limit lead to increase of the handling cost. It comes usually from a different types of problems classified due to their nature (Reservoir, Mechanical or Complex). Figure 2-1 distinguish between the two types of water.

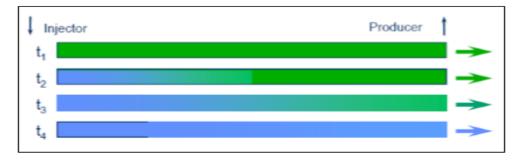


Figure 2.1 Bad Water vs. Good Water (Bailey et al, 2000)

2.3 Sources of Unwanted (Excessive) Water Production:

Excess Water Production Problems:

2.3.1 Casing, Tubing, Packer Leaks:

Leaks through casing, tubing, and packer allow water from nonproductive zone to enter the production string. basic production logs such as density, temperature and spanner may be sufficient to diagnose this problems but in more complex well use WFL water flow logs or multiphase fluid logging such as TPHL three phase fluid holdup log can be valuable. Solution typically include squeezing shutoff fluids and mechanical shutoff using plugs, cement and packers. This problem type is a prime candidate for low cost.

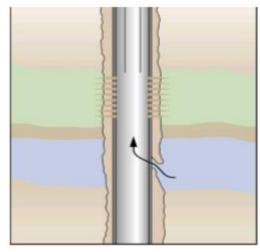


Figure 2.2 Casing, tubing, packer leaks.

2.3.2 Channel Flow Behind Casing:

Failed primary cementing can connect water bearing zones to the pay zone. These channels allow water to flow behind casing in the annulus. A secondary cause is the creation of a "void" behind the casing as sand is produced. Temperature logs or oxygenactivation-based WFL logs can detect this water flow . The main solution is the use of shutoff fluids, which may be either high-strength squeeze cement, resin based fluids placed in the annulus, or lower strength gelbased fluids placed in the formation to stop flow into the annulus.

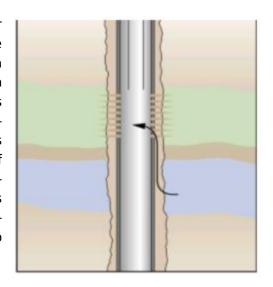
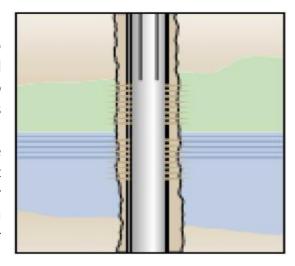



Figure 2.3: Channel flow behind casing

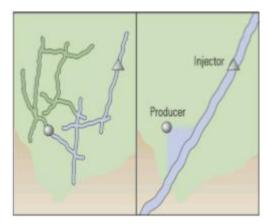
2.3.3 Moving Oil-Water Contact:

A uniform oil- water contact moving up into a perforated zone in a well during normal water-driven production can lead to unwanted water production .This happens wherever there is very low vertical permeability, in fact , this problem type could be considered a sub site of coning, but the coning tendency is so low that near wellbore shut of is effective. Diagnoses can not be based solely on known entry of water at the bottom. In a vertical well this problem

can be solved easily by abandoning the well from the bottom using mechanical system such as a cement plug or bridge plug. In horizontal wells any wellbore or near wellbore solutions must extend for enough up-hole or down-hole from the water producing interval to minimize horizontal flow of water past the treatment and delay subsequent water break through.

Figure 2.4 Moving oil-water contact

2.3.4 Watered Out Layer Without Cross Flow:

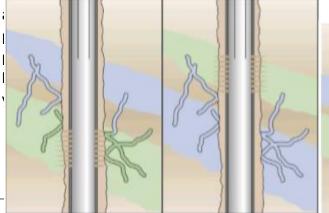

A common problem with multilayered production accrue a high permeability zone with a flow barrier (such as a shell bed) above and below a watered out. In this case, the water source maybe from an active aquifer or a water flood injection well. This problem is easily solved by the application of rigid, shutoff fluids or mechanical shutoff in either the injector or producer. The absence of crossflow is dependent on the continuity of permeability barrier.

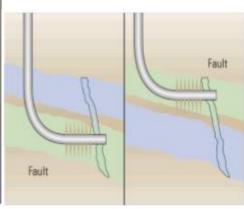
Horizontal wells that are completed in just one lay not subject to this type of problem.

Figure 2.5 Fractures or faults between injector and producer

2.3.5 Fractures Or Faults Between Injector And **Producer:**In naturally fractured formations under water floods, injection water can be rapidly break through into producing wells. This is specially common when the fracture system is extensive or fissured and can be conformed with use of enter well tracers and pressure transient testing. Tracer logs also can be used to quantify the fracture volume, which is used for the treatment design. Water shutoff is usually the best solution for this problem. Wells with severe fractures or faults often exhibits extreme loss of drilling fluids. If a conductive faults and associated fractured are

Figure 2.6 Fractures or faults between injector and producer

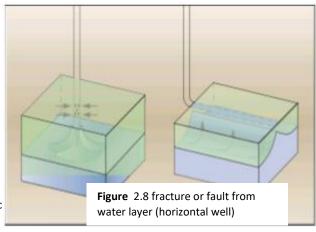

expected during drilling, pumping flowing jell into the well may help solve both the drilling problem and the subsequent water production and poor swipe problems-particularly in formations with low matrix permeability. In horizontal wells, the same problem can exist on the well intersect one or more faults that are conductive or have associated conductive fracture.


2.3.6 Fracture Of Faults From A Water Layer:

Water can be produced from fractures that intersect a deeper water zone. This fractures maybe treated with a flowing jell this is particularly successful where the fracture do not contribute to oil production. Treatment volume must be large enough to shutoff the fracture far away from the well, However, the design engineer is faced with three difficulties.

- First, the treatment volume is difficult to determine because the fracture volume is unknown.
- Second, the treatment may shutoff oil producing fracture; here, an overflush treatment maintenance productivity near the wellbore.
- Third, if the following jell is used, it must be carefully tailored to resist flowback after the treatment. Similarly, a degradation in production is caused when hydraulic fracture penetrate water layer. However, in such cases the problem and environment are usually better understood an solution, such as

shutoff fluids, are easier to



2.3.7 Coning:

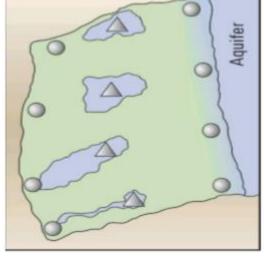
Coning occurs in vertical wells when there is an oil water contact near perforations in a formation with a relatively a high vertical permeability. In horizontal wells, this problem maybe referred to as dunning. In such wells, it maybe possible to at least retard dunning with near wellbore shutoff that extend sufficiently-up and

Figure 2.7 fracture or fault from water layer (vertic

down-hole as in this case of

raising water oil contact.

Figure 2.9 coning


2.3.8 Poor Areal Swipe:

Edge water from an aquifer or injection during flooding through a pay zone often

leads to poor areal sweep. Areal permeability anisotropy typically causes this problem, which is particularly severe in sand channel deposits. The solution is to divert injected water away from the pore space, which has already been swept by water. This requires a large treatment volume or continuous viscous flood, both of which are generally uneconomic. Infill drilling is often successful in improving recovery in this situation, although lateral drain-holes may be used to access unswept oil more economically.

Horizontal wells may extend through different

permeability and pressure zones within the same layer, causing poor areal sweep. Alternatively, water may break through to one part of the well simply because of horizontal proximity to the water source. In either case, it may be possible to control water by near-

wellbore shutoff sufficiently up- and down-hole from the water.

2.7.9 Gravity-Segregated Layer:

In a thick reservoir layer with good vertical permeability, gravity segregation sometimes called water under run can result in unwanted water entry into a

producing well. The water, either from an aquifer or waterflood, slumps downward in the permeable formation and sweeps only the lower part of the reservoir. An unfavorable oil-water mobility ratio can make the problem worse. The problem is further exacerbated formations in with sedimentary textures that become finer upward, since viscous effects along with gravity segregation encourage flow at the bottom of the formation. Any treatment in the injector aimed at shutting off the lower perforations has only a marginal effect in sweeping more oil before gravity segregation again

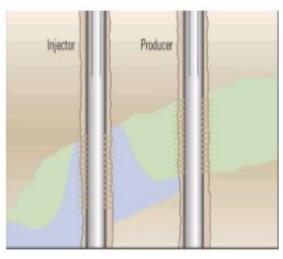


Figure 2.11 Gravity-segregated layer

dominate. At the producers there is local coning and, just as for the coning case described earlier, jell treatment are unlikely to provide lasting result. Foamed viscous flood fluid may also the vertical sweep. In horizontal well, gravity segregation can occur when the wellbore is placed near the bottom of the bay-zone when the local critical coning rate is exceeds.

2.3.10 Watered-Out Layer With Cross-Flow:

Water cross-flow can occur in high permeability layers that are not isolated by impermeable barrier. Water production through highly permeable layer with cross-flow is similar to the problem of watered-out layer without cross-flow but differs in that there is no barrier to stop cross-flow in the reservoir. In this case, attempts to modify either the production or injection profile near the wellbore are doomed to be short-lived because of the cross-flow away from the wellbore. It is vital to determine if there is a cross-flow in the reservoir since this alone

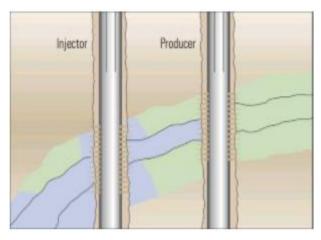


Figure 2.12 Watered-Out Layer With Cross-Flow.

distinguished between the two problems when. The occurs without cross-flow, it can be easily treated. With a cross-flow, successful treatment is less likely.

2.4 Identifying the Problem:

Reducing excessive water production usually starts with gathering all available reservoir and production data. Then logging tools are used to locate the water entry points. Finally, based on the results, a proper shutoff method is used [Burov,A.;Kharrat,W and Hussein,N.2012]. The most important part in any water shutoff operation is the accurate diagnosis of the problem. It is essential to know the water entry point, the heterogeneity of the reservoir rocks, dominant production mechanisms, and the schematics of the wellbore [Yortsos, Y.C.; Choi, Y.; Yang, Z.; Shah, P.C.1999]. In fact, all available information about the well is considered valuable, like drilling operations reports, logs, and product0ion history. The reason behind that is that every well would have its own workflow based on it is properties, history, and reservoir heterogeneity. Accurate investigation leads to success in the water shutoff operation, increasing oil production, and saving water handling costs. Fayzullin et al. Production logging tools in production wells usually are used to identify the water production zones, which is an important step in planning for an optimized water shutoff operation. For water injection wells, water flow logs are used to identify the thief zones. However, horizontal wells are challenging in identifying the problem as well as in the intervention part. That is due to the complicity of the wellbore, flow regimes, and their effects on obtaining the required information. Luckily, advanced production logging tools can be used to identify the entry points as well as the rates [Ahmad,N.;Al-Shabibi,H.and. Malik,S.2012]. Fiber optics technologies are used nowadays along with logging tools to ensure high quality real time data that help in accurately identifying the water entry zones [. Olarte, J.D.; Haldar, S.; Said, R.2011]. Al-Zainet. al.[Al-Zain, A.; Duarte, J.; Haldar, S. 2009] present a case of successful usage of fiber optics to shut off un wanted water production in an oilfield. In addition to that, water/oil ratio (WOR) plots can be used to identify the excessive water production problems. In fact, it can be a more effective tool than logging in many cases as explained in [Al Hasani, M.A.; Al Khayari, S.R.; Al Maamari, R.2008]. For channeling behind the casings, running cement bond logs or ultrasonic pulse-echo logs plays a vital role in ensuring the integrity of the cement job behind the casing. Those kinds of logs evaluate the bonding properties of the cement job behind the casing and point out bad cement areas. For casing leaks, production, temperature, and noise logs are all means of identifying the sources of leaking [Economides, M.J.; Hill, A.D.; Ehlig-Economides, C.2008].

2.4.1 RESERVOIR PERFORMANCE PLOTS AND ANALYSIS FOR WATER PRODUCTION:

According to Sight et al (1997), several methods can be useful in the identification of the source and nature of excess water production. Some of these methods could include simple injectivity and productivity calculations, inter-well tracer studies, reservoir simulation, pressure transient analysis, and various logs. Kinaki (2005) itemized the following plots for the analysis of both the producers and the injection wells. The following plots were identified for producing wells

- Production history plot
- Log of Water Cut or Oil Cut Versus Cumulative Production
- Fetkovich type curves
- Omoriegie-Ershaghi Plot (X plot)
- Dowell-Schlumberger log(WOR) Diagnostic Plot

While for the injection wells, the plots are

- Injectivity curves pseudo injectivity
- Hall Plots
- Hearn plot

Some of these plots are discussed in the following section.

2.4.1.1 Production history plot

The production history plot is a plot of oil and water rates against production time (Fig. 2.13). This plot helps in visualizing rate changes during the field life cycle and assessing any "uncorrelated behaviors" (Ilk et al. 2007) such as changes in the rate without corresponding changes in pressure. Wells with water production problem usually show a simultaneous increase in water production with a decrease in oil production (Bailey et al. 2000).

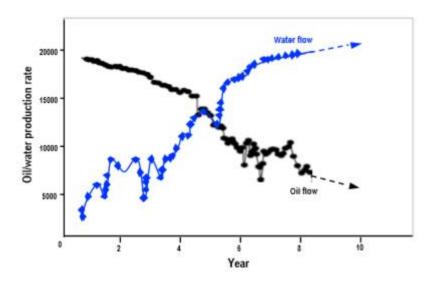


Figure 2.13 An example production history plot

2.4.1.2 LOG OF WATER CUT OR OIL CUT VERSUS CUMULATIVE PRODUCTION According to Bondar (1997), the logarithm of WOR or water cut (fw) function plotted against cumulative production is commonly used for evaluation and prediction of water flood performance. This presumed semi-log plot of fw and oil recovery allows extrapolation of the straight line to any desired water-cut as a mechanism for determining the corresponding oil recovery. Straight-line extrapolation method

assumes that the mobility ratio is equal to unity and the plot of the log of relative permeability ratio of the flowing liquids, (krw/kro), versus water saturation, Sw is a straight line. According to Omoregie and Ershaghi (1978), this approach is only applicable for fw greater than 0.5 and it should not be used during the early stage of a water flood.

LOG OF WATER CUT VS. CUMULATIVE OIL PRODUCTION

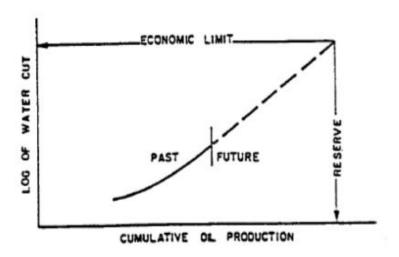


Fig 2.14 Production plot showing log of water cut versus cumulative oil production (Satter and Thakur, 1994)

LOG OF OIL CUT VS. CUMULATIVE OIL PRODUCTION

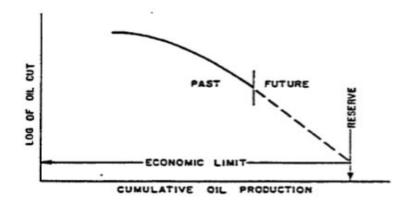


Fig 2.15 Production plot showing log of oil cut versus cumulative oil production (Satter and Thakur, 1994)

2.4.1.3 HALL AND HEARN PLOT FOR INJECTORS

Hall and Hearn method are applicable to water flooded operations where injection wells are surface pressure controlled and where bottom hole injection just below formation parting pressure (FPP) is desired (Jarrel and Stein, 1991). These methods help in monitoring the acceleration of fill-up and average reservoir pressure growth in an actual field. While the Hall plot is the plot of the bottom hole injection pressure versus the cumulative water injected, Hearn plot is the plot of inverse injection index versus cumulative water injection. Monitoring these plots as pressure and rate increases renders qualitative interpretation of whether the rates are being maintained below the formation parting pressure (FPP). The assumptions inherent in these plots are piston-like displacement, steady state, radial single phase and single layer flow with the reservoir pressure, pe being constant. It is also assumed that there is no residual gas saturation in the water and oil zones. The Hall and Hearn plots can be used to determine reservoir properties such as transmissivity (kh) etc as reservoir condition changes. These plots are based on the radial, steady state .

According to Chan (1995), the above plots could be useful to evaluate production efficiency, but they do not reveal any detail on reservoir flow behaviours. Although, some of the plots could show reservoir characteristics, they do not shed any clue on the timing of the layer breakthrough. Therefore the need for the diagnostic plot was proposed by Chan. It reveals detailed reservoir flow behaviours, the timing of the layer breakthrough and the relationship between the rates of change of the WOR with the excessive water production mechanism.

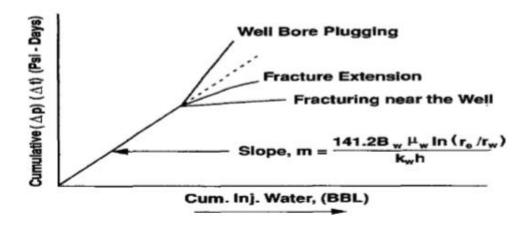


Fig 2.16 The Hall Plot (Jarrel and Stein, 1991)

Fig 2.17 The Hearn Plot (Jarrel and Stein, 1991)

2.4.1.4DIAGNOSTIC PLOTs

According to Chan (1995), the log-log plots of WOR (Water-Oil Ratio) versus time or GOR (Gas-Oil Ratio) versus time show different characteristic trends for different mechanisms. The time derivatives of WOR and GOR were found to be capable of differentiating whether the well is experiencing water and gas coning, highpermeability layer breakthrough or near wellbore channelling. Chan identified three most noticeable water production mechanisms namely water coning, near well-bore problems and multi-layer channelling. Log-log plots of the WOR (rather than water cut) versus time were found to be more effective in identifying the production trends and problem mechanisms. !t was discovered that derivatives of the WOR versus time can be used for differentiating whether the excessive water production problem as seen in a well is due to water coning or multilayerchannelling. Figures 2.12 through 2.15 (Chan, 1995) illustrate how the diagnostic plots used to differentiate among the various water production mechanisms. Fig. 2.15 shows a comparison of WOR diagnostic plots for coning and channelling. The WOR behaviour for both coning and channelling is divided into three periods; the first period extends from start of production to water breakthrough, where the WOR is constant for both mechanisms. When water production begins, Chan claims that the behaviour becomes very different for coning and channelling. This event denotes the beginning of the second time period. For coning, the departure time is often short (depending on several variables), and corresponds to the time when the underlying water has been drawn up to the bottom of the perforations. According to Chan, the rate of WOR increase after waterbreakthrough is relatively slow and gradually approaches a

constant value. This occurrence is called the transition period. For channelling, the departure time corresponds to water breakthrough for the most water-conductive layer in a multi-layer formation, and usually occurs later than for coning. Chan (1995) reported that the WOR increases relatively quickly for the channelling case, but it could slow down and enter a transition period, which is said to correspond to production depletion of the first layer. Thereafter, the WOR resumes at the same rate as before the transition period. This second departure point corresponds to water breakthrough for the layer with the second highest water conductivity. According to Chan, the transition period between each layer breakthrough may only occur if the permeability contrast between adjacent layers is greater than four. After the transition period(s), Chan describes the WOR increase to be quite rapid for both mechanisms, which indicates the beginning of the third period. The channelling WOR resumes its initial rate of increase, since all layers have been depleted. The rapid WOR increase for the coning case is explained by the well producing mainly bottom water, causing the cone to become a high-conductivity water channel where the water moves laterally towards the well. Chan (1995), therefore, classifies this behaviour as channelling. Log-log plots of WOR and WOR time derivatives (WOR') versus time for the different excessive water production mechanisms are shown in Figures 2.13 through 2.15. Chan (1995) proposed that the WOR derivatives can distinguish between coning and channelling. Channelling WOR' curves should show an almost constant positive slope (Fig. 2.), as opposed to coning WOR' curves, this should show a changing negative slope (Fig. 2.). A negative slope turning positive when "channelling" occurs as shown in Figure 2.15, characterizes a combination of the two mechanisms. Chan classifies this as coning with late channelling behaviour.

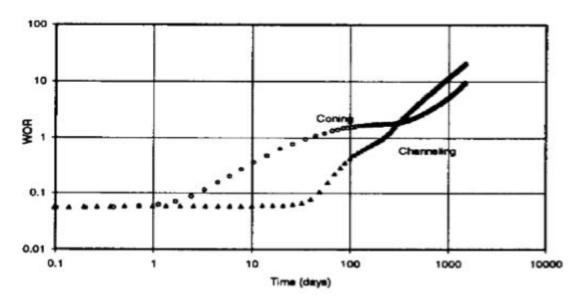


Fig 2.18 Water coning and channelling WOR comparison. Chan (1995)

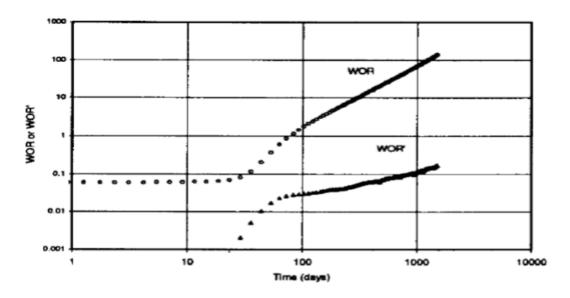


Fig 2.19 Multi-layer channelling WOR and WOR derivatives. Chan (1995)

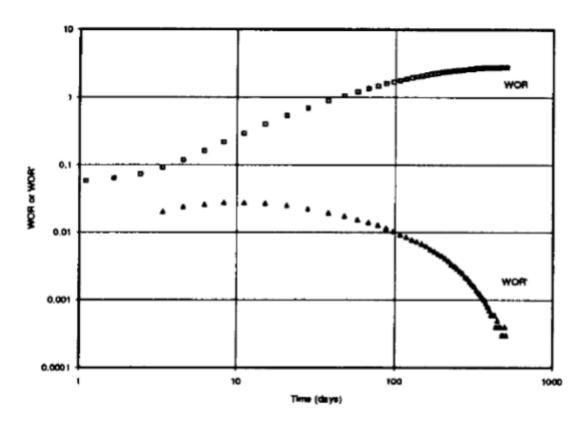


Fig 2.20 Bottom-water coning WOR and WOR derivatives. Chan (1995)

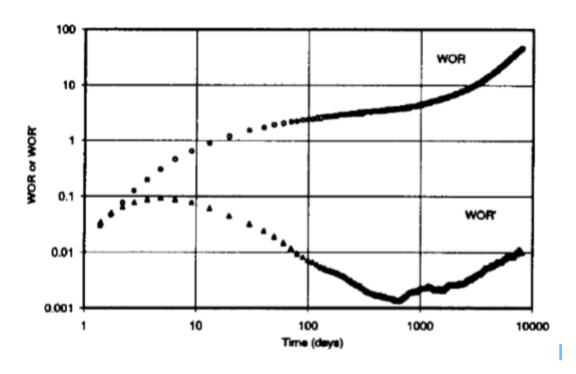


Fig 2.21: Bottom water coning with late time channelling. Chan (1995)

Recently, the use of Chan's WOR diagnostic plots has received significant interest in the oil and gas industry (Seright, 1997).

2.5 Water Shutoff Operations and Techniques:

2.5.1 Chemical Solutions:

Far from the wellbore, in the reservoir or near the wellbore, water shutoff operations can be performed by several chemical treatments. Those chemical solutions lead to better conformance in the reservoir as well as blocking the unwanted water production zones. The idea is to be able to close the paths of least resistance in front of the water by reducing their permeability in order to prevent the water from coming to the wellbore through them. Also, they aid in forcing the water to mobilize and displace the oil in the reservoir. In other words, the aim is to block the open features and high permeability channels to force water to go toward the harder path to sweep oil from the matrix rock that results in higher overall economical returns than producing oil from fractures. In fact, induced formation damage can be used as an effective solution to control the unwanted water production [Zeinijahromi, A.; Bedrikovetski, P.2015]. The results of chemical solutions can be achieved in a couple of months to years, depending on the nature of the reservoir and the properties of the injected chemicals. The main advantage that chemical water shutoff operations have over mechanical operations is that they solve the problem of the unwanted water production instead of hiding it under or behind a plug, packer, or tubing patch. Injected chemicals can reach water features in the reservoir and reduce the permeability, resulting in closing them entirely. They also have the freedom of moving between the layers and features which helps in reaching to far extents and completely closing them. Another use of chemical injection is to increase the viscosity of the injected fluid which leads to a better sweeping efficiency and eventually reduces the production of unwanted water. The success of chemical injection operations depends on the knowledge level of the reservoir and its characterizations, chemical properties, and accurate placement of the injected chemicals [Surguchev, L.M. 1998]. For example, the effectiveness of water shutoff agents depends highly on the properties of the reservoir and has to be compatible with the reservoir temperature and water salinity in order to achieve an effective water shutoff [Sun, Y.; Fang, Y.; Chen, A.2017]. In this section, common chemical solutions are discussed in detail, along with examples of the execution of the operations.

2.5.1.1 Gel

Gel injection is one of the most famous chemical solutions for water shutoff operations. It is used to reduce the water oil ratio. That happens through the ability of the gel to reduce the permeability and block the open features, fractures, and high permeability water zones. It can be applied in the wellbore, near the wellbore, and far from the production well through injection wells. It is very effective in reducing the permeability of unwanted zones and has proven its ability to improve the sweep efficiency and shutting-off the unwater water zones. The injected gel is mainly made of water, small volumes of polymers and crosslinking chemical agents [Sydansk, D. and Romero-Zeron, L.2011]. Gel treatments can completely seal off layers; therefore, they are considered aggressive and risky conformance control operation

[3]. On the other hand, polymer gel injection is considered relatively cheaper than other improved oil recovery operations. Gel injection operations are divided into three main stages: modeling, designing, and executing. The first step is to model the gel injection operation by using simulation software, which is an important step for designing the program of gel injection operation[18]. In this stage, all the available information about the reservoir and the well are considered valuable, such as: reservoir parameters, water entry points, drilling operations reports, logs, and production history. The second step is to design the properties of the polymer gel fluid. Injecting gel in the reservoir depends on four properties. First one is the viscosity of the gel at the time of injection which helps in directing the gel to the lager and least resistance paths. Second is the nature of the gel phase which is usually chosen to be the aqueous phase since the water is the desired phase to be shutoff. Third is the density of the gel. It very important to be designed carefully and based on the density of the formation water to avoid losing the effectiveness of the gel treatment. Four this the setup time or injection time. Longer injection time leads to more success in allowing the gel to seal off larger features and least resistance paths [3]. Al-Dhafeeri et. al. [20] present a case study of using gel treatments as a chemical solution to seal the excessive water zones.

2.5.1.2 Polymer Flooding

Another common technique for water shutoff operations is the usage of the polymer flooding method to increase the viscosity of the water. This technique is applied to increase the viscosity of the drive fluid (water) which helps in mobilizing and displacing the oil in the reservoir matrix rock. This technique is usually applied in the reservoir far from the production wells through water injection wells to achieve better sweeping efficiency in the reservoir. That eventually leads to preventing excessive water production. The usage of polymer flooding is very common among the oil operators and it can be prepared by dissolving the polymers in the injected water and inject it through injection wells. Polymers used in this technique are usually two types: biopolymers and synthetic polymers. Biopolymers' advantages over the synthetics are that they are not affected by the salinity of the water and they are insensitive to the mechanical degradations. However, they are more expensive than synthetic polymers. Xanthan and scleroglucan are two famous kinds of biopolymers. Synthetic polymers are more common since they are cheaper, more available, and perform well with low-salinity water. Polyacrylamide (PAM) and hydrolyzed polyacrylamide (HPAM) are two types of synthetic polymers. Polymers can also play a role in reducing the permeability if the molecular weight is increased Sydansk, D.and Romero-Zeron, L 2011]. Finally, based on the characteristics of the reservoir and the economics of the operations, the right polymer is chosen in case of chemical injection [. Gharbi, R.; Alajmi, A.; Algharaib, M.2012].

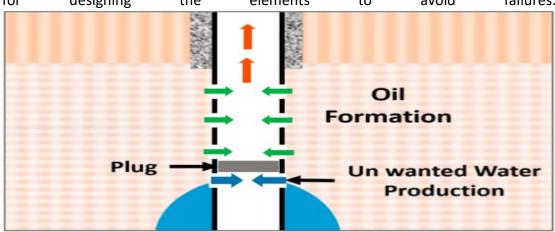
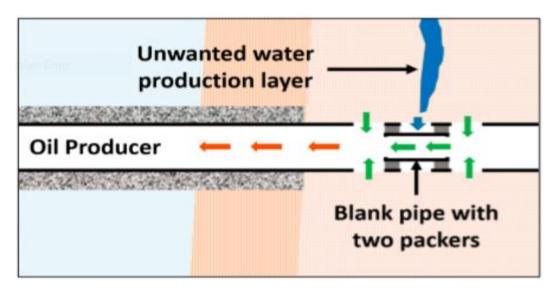
2.5.2 Mechanical Solutions:

Within the wellbore, there are available technologies which can successfully shutoff the unwanted water production. The impact can be seen in hours in contrast to the chemical solutions which was discussed in the previous section. Controlling the water production mechanically is known for it is fast outcomes as well as its cheap costs. It is usually a rigless job, which means a lower cost [. Ahmad, N.; Al-Shabibi, H. and Malik,S.2012]. Mechanical water shutoff operations are preferred by operators since they are relatively cheaper than chemical solutions [Permana, D.; Ferdian, G.; Aji, M.and Siswati, E.2015]. Once more, an accurate diagnosis is essential before attempting to apply those solutions, since it can result in losing the oil production from the well. That can be achieved, as mentioned previously, through running logs to identify the water production zones. In the case of mechanical shutoff operations, there are some factors affecting the success of them. One of them is the setting depth of the plug or the packer can be wrong due to in accurate readings from the coiled-tubing meter. The reservoir conditions also play a great role in affecting the operations, since a cross flow between the layers can happen and leads intervention to failure. The wellbore condition is another vital factor which needs to be considered. Scale presences in the tubing can result in failure of the operations, since it can create an obstacle while running the plug or the packer downhole. Wells with high deviation angles can be challenging to run in hole with coiled-tubing since they can get stuck a lot [Denney, D.et al 2001]. In this section, common mechanical solutions are discussed in details along with examples of the execution of the operation.

2.5.2.1 Plugs and Packers:

One of the most well-known mechanical solutions for water shutoff and isolation operations inside the wellbore is the installation of packers and plugs. They are successful in eliminating the production from unwanted water zones. They are commonly used by oil operators to aid the wells performance and shut off the excessive water production [Offenbacher, M.; Gadiyar, B.; Messler, D.2015]. This hardware is known for being economical and reliable in achieving isolation since it can be installed without pulling the production tubing and without the drilling rig. They can be installed by using coiled tubing which can run them through the wellbore. Also, the results can be achieved relatively fast, in a couple of hours to days, in contrast with chemical injection solutions. Simply , the concept of packer sand plugs is a small diameter element, mainly rubber, which can expand downhole the wellbore into larger diameters, creating a seal and isolating the well from unwanted features or zones [26. Wilson, P.and Hoffman, C.E.2000]. There are different types of packers and plugs with different properties and setting techniques. Some elements expand by interacting with certain types of fluids (oil, water, or hybrid) which are known as 'swellable packers'. They also depend on pre-designed properties like temperature ,pressure, and salinity of the formation fluid. That can be a disadvantage in some cases and leads to failure in setting the element. If those properties are not accounted for accurately, that might lead to a faster inflation of the elements or even slower inflation than expected. In the worst case scenario, the element might not inflate at all. Other packers and plugs inflate by applying pressure on the element in order to expand and seal. These types of plugs usually inflate by pumping darts, steel balls, or fluid to apply pressure on the rubber element and allow it to expand and increase its diameter. Packers and plugs can be used to isolate unwanted water production inside the wellbore in certain cases. An easy example would be an open-hole well completion and the water zone is identified to be from the bottom of the well. A bridge plug can be installed to isolate the bottom section and shut down the additional water production to aid the production performance from upper oil zones (Figure 6). The difficulty increases if the water source happens to be in the middle or at the top part of the production section of the tubing in the reservoir section. In that case, a blank pipe with upper and lower packers ,

with apre-designed length, can be installed to isolate the water production area without compromising the lower and upper oil production zones (Figure 7). In the case of a multi-lateral wells, if one of the laterals is watered-out or producing extreme amounts of unnecessary water, it can be abandoned by setting a plug to isolate it from other laterals. The usage of packers is also used in early stages of the well life, specifically in the completion stages after drilling. That is a common practice for operators who have a reasonably decent knowledge of the expected features and layers of their reservoir. Also logging while drilling tools can be an asset by identifying the open features which might be the future reason for bad water production. After drilling the well and collecting the data, a pre-perforated liners can be installed with packers to produce only the good layers and isolate the risky formations. Once more, an accurate and cautious pre-design of the job is essential for designing the elements avoid failures.

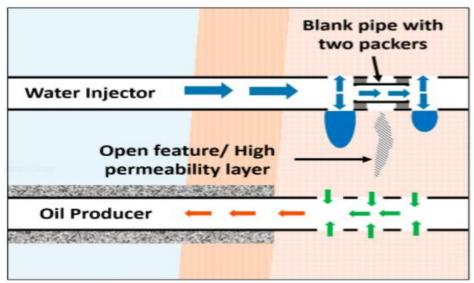

Figure 2.22 Using a plug to shut off the production of water from the bottom.

Figure 2.23 Two packers above and below a blank pipe to shut off the production of water from the middle and upper intervals without compromising other oil production zones .

Likewise, for water injection wells, those plugs can be used to insure better conformance outcomes and to eliminate the production of bad water from the production wells through thief zones, high permeability layers, or connected open features. For example, if any of the previous features have been identified in the injection profile of water injection well, plugs can be used to isolate injected water from going into them. If there is an open feature at the bottom of a water injection well, a plug can be installed to isolate the bottom section, to avoid wasting the injected water and direct it into oil matrix rocks instead. Similarly, if the feature happens to be at the middle or the top of the injection profile, a blank pipe with upper and lower packers can be installed to isolate the thief zones from stealing the injected water without compromising the conformance and the sweeping installed to isolate the thief zones from stealing the injected water without compromising the conformance and the sweeping efficiency of the field (Figure).

Other than that, inflatable packers are also used in chemical injection for water shutoff operations. As mentioned previously, chemicals can be used in the near wellbore area to control and shut off the unwanted water production. However, this operation considered risky because of the high cost and the risk of injecting the chemicals into the oil production zones [Plante,M.E.and Mackenzie,G.R.J.2000]. Therefore, packers are used to direct the flow of the injected chemicals into the desired layers and prevent fluid from going into the production formation. Packers create a seal by inflating and isolating the upper and bottom intervals to make sure that chemicals do not bypass to the oil zones.

Figure 2.24 Two packers above and below a blank pipe to avoid injecting the water in open features or high permeability layers.

2. 5.2.2 Tubing Patches:

This method is mainly used for fixing well integrity issues particularly casing leaks. The casing leaks problems are common in old wells and the wells which are corrosive completed in formations with gases H2S [Lizak,K.F.;Zeltmann,T.A.;Crook,R.J.1992 and . Meek, J.W.; Harris, K.1993]. If the source of the unwanted water was found to be from a leak in the casing, squeezing cement or resins patches is considered to be a suitable solution. This method can be applied only after identifying the exact location of the leak through the methods discussed earlier. Squeezing jobs can be performed by rigs or sometimes with current technologies can be a rigless job. Usually, inflatables are used to direct the patches toward the leaking point [. Bybee, K. Unique Rigless Casing Leak Repair. J.2001]. For small leaks, fine cement particles are squeezed to fix the well integrity issue as well as creating a seal [Lizak, K.F.; Zeltmann, T.A.; Crook, R.J. 1992].

CHAPTER 3

METHODOLOGY

3.1. Introduction:

This chapter deals with the methodology and the major directions of this research.

The production well performance evaluation and diagnostics deals with various plots on well evaluation and diagnostics

The injection well performance evaluation plots and the diagnostic plots.

3.2. Type of Data Required to Implement Project

- Daily oil production
- Daily water production
- Gas producti11on
- Number of production days in month

3.3 FIELD PRODUCTION PERFORMANCE EVALUATION

This entails the plots of the field data to determine how well the field is producing based on the oil and water production rates and time.

The plots considered here are:

- Oil and water production rates with time

3.4 FIELD PRODUCTION DATA DIAGNOSTIC PLOT

The diagnostic plots for the field and well production are described for identifying the nature and the cause of the water production problems; that is, the water production mechanisms in the reservoir.

The plots considered for the diagnosis are

- The Log-Log plot of Water Oil Ratio with time
- The Log- Log Plot of Water Oil Ratio derivative with time

The WOR and the WOR derivative (WOR') plots are used in combination to diagnose the reservoir related water production mechanism prevailing in the reservoir. It takes into cognisance that an upward sloping of the WOR plot with time

indicates increased water production. It also considers that the upward sloping of the WOR derivative indicates multilayer channelling while the downward sloping indicates water coning. For the purpose of this work, the centre difference first order derivative approach is used to determine the WOR'.

3.5 Software To Be Used OIL FIELD MANAGER Program (OFM)

3.6 Anticipated Results:

It takes into cognisance that an upward sloping of the WOR plot with time indicates increased water production. It also considers that the upward sloping of the WOR derivative indicates multilayer channelling while the downward sloping indicates water coning. For the purpose of this work, the centre difference first order derivative approach is used to determine the WOR'. Where WOR' is given by

WOR Slope	WOR' Slope	Reason for Water Production
Positive	Positive	Channeling
Positive	Negative	Coning
Positive linear slope	Horizontal line	Water/oil contact rising

CHAPTER 4

After field start to produce oil the water production increase was so excessive that probably reasons of fault and high permeability. The well(sh2) is produce from S1A and it's perforations top equal to 1453.2 MDRKB and bottom perforation equal to 1470.2 MDRKB there is too much water and too little oil produced from the well. the increase of liquid from well in 2004 is attributed to the start of injection in (sh1) In S1A layer. as (sh1) continues injection at higher rates during 2004 and 2005, the rates and pressures in (sh2) also trend higher. In well (Sh9) is produce from S1C layer it's perforations top equal to 1479.5 MDRKB and bottom perforation equal to 1484 MDRKB. The well (sh23)

4.0 RESULTS AND DISCUSSION OF RESULTS

The results obtained from The Study are presented and discussed in this section. The order of the discussion is thus;

- The field performance.
- The performance evaluation and diagnostics of the producing wells from the simulation as well as that of the Case study are presented.

4.1 ANALYSIS OF FIELD OIL RATE AND WATER RATE PLOTS

Oil rate and water rate versus time plots of the field data for The Case Study are

analyzed in the following section. Figures 4.1 and 4.4 shows the graph of the field

and well production rates, respectively .As deduced from the s results, oil rate would decline with increase in water production. These can be seen in the field plots (Fig 4.1) and the individual well plots (Fig 4.2). The plot of oil and water rate with time shows the point of equal oil rate and water rate and beyond . It is noted that individual well plots (e.g., Fig. 4.2 to 4.4) show the sequence of events (like well shutins) during the production of the wells.

Shryoof Production Rate With Time

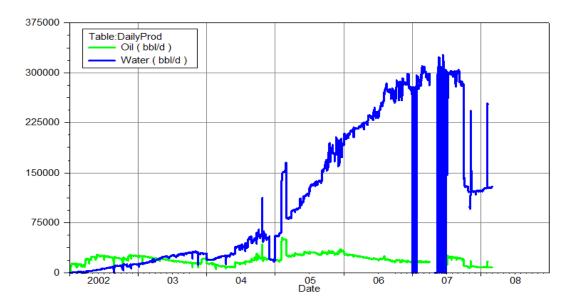


Fig 4.1: field production rate versus time

In 27-Sep-2006 Workover job was performed to Sh002 to change the ESP pump HR13599, 65 stages with HR13500 ESP pump, 116 stages without Y tool (Y-tool has unable to be run due to large OD of assembly).these is cause icrease of water and oil production rate.

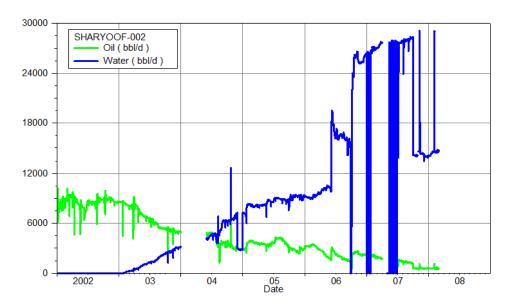


Fig 4.2: Well production rate versus time (Well 002)

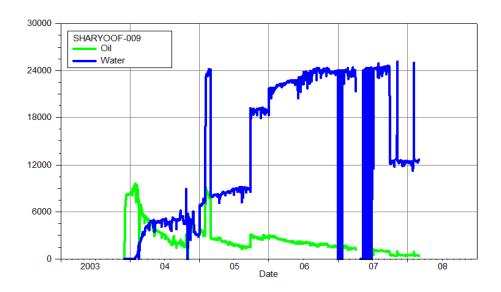


Fig 4.3: Well production rate versus time (Well 009)

29-Oct-2004 Workover job was performed to replace the ESP. A new HR13500, 116 stages, ESP assembly was picked up and run on a new 5-1/2", 15.5 spf, BTC tubing string

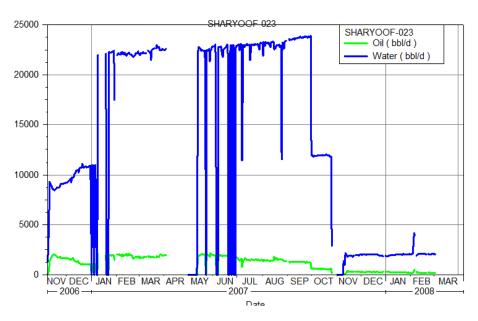


Fig 4.4: Well production rate versus time (Well 023)

4.2.1 DIAGNOSIS OF SIMULATED RESERVOIR PRODUCTION PERFORMANCE:

Figures 4.5 through 4.7shows the trend of the simulated log-log plots of WOR and WOR' with time. Fig. 4.5 which is a field simulated plot, shows a positive slope for WOR and the WOR' plot is positive. From Fig 4.6 there is an increasing trend for WOR wearas WOR' first decline and then increase that mean in first of production there is coning then channeling is happened . Chan (1995) shows the diagnostic trends of reservoir related problems to have positive slopes for both WOR and WOR' for channelling and a positive and negative slope for WOR and WOR' respectively for coning. Fig 4.7 does not indicate the trends to conclude whether the water production is due to channelling or coning. It indicate that the reservoir is normal but when we compare time of production for this well with an bounded well we understand that is because start to produce in late time that means that the channeling is happened before in these area .

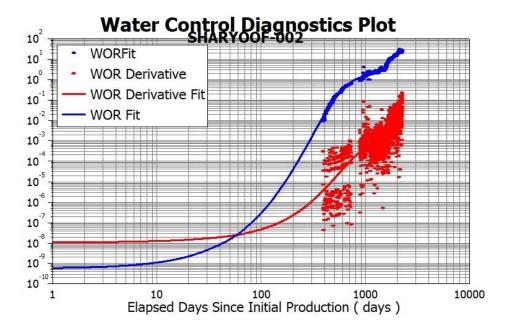


Fig 4.5: Well Diagnostic Plot (Well 002)

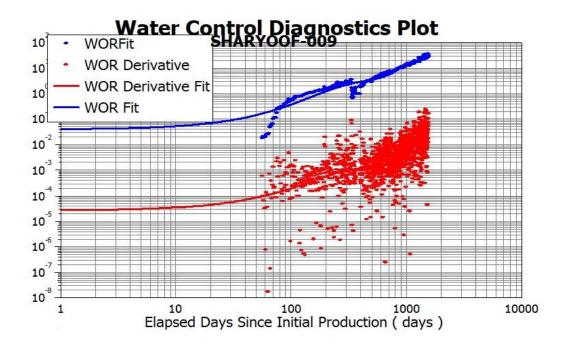


Fig 4.6: Well Diagnostic Plot (Well 0.09)

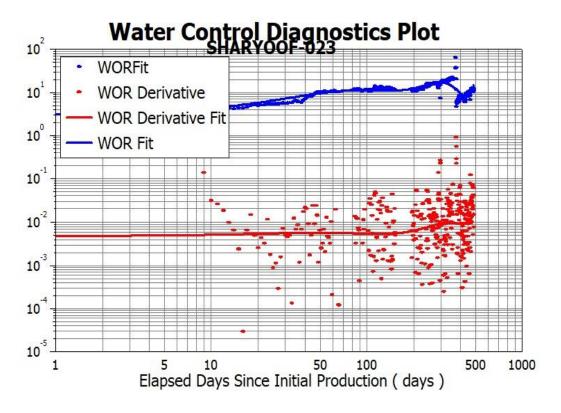


Fig 4.7: Well Diagnostic Plot (Well 0.23)

4.3 Water coning:

is movement of water upward into oil strata in response to production of oil and lower reservoir pressures. May be localized in areas of high vertical permeability.

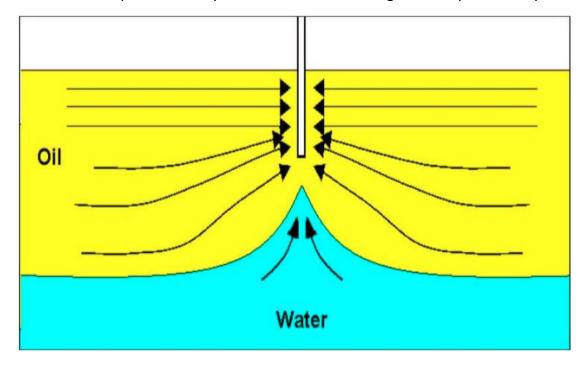


Fig4.8 Schematic of water coning into a well

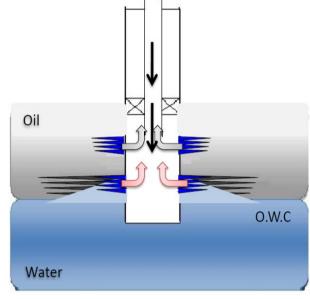
4.3.1 Reasons of Water Coning

One of the primary factors leading to coning is pressure drawdown, another author said that the primary factor leading to coning is movement of reservoir fluids towards the zone of least resistance. Muscat and Wyckoff (1935) point out some significant reasons for coning as well. The first reason is that the pressure drop between the reservoir boundary and the points below the bottom of the well is greater than the hydrostatic head of the given water column. Second reason is related to viscous and gravity forces. The latter is associated with density difference between the oil and water. Gravity forces act in vertical direction and cause the fluid to rise due to density difference. At any time there is an equilibrium between viscous and gravity forces. Once this balance is destroyed, more specifically, when the viscous forces exceed the gravitational ones, cone will break into the well. On the other hand, if the pressure in the system is in unsteady state, the cone, which is now known as an unstable, will proceed towards the well until the steady-state condition is reached. The reason for water cone to become unstable is that upward dynamic force is extremely high and is not possible to balance with the weight of water below. . After knowing the reasons of water coning and diagnosis this problem we should find the breakthrough time and critical production rate by using correlation that have done by Sobocinski and Cornelius (1964), and Bournazel and Jeanson (1971) for breakthrough time and Chaperon (1986), Ozkan and Raghavan (1990), and Giger (1989) for critical production rate.

4.4 Channeling

Water channeling is common when high permeability layers or fractures allow early water breakthrough during waterflooding. Higher permeability streaks can allow fluid that is driving hydrocarbon production to breakthrough prematurely, bypassing potential production by leaving lower permeability intervals unswept. This is most common in active water-drive reservoirs and water floods. As the driving fluid sweeps the higher permeability intervals, permeability to subsequent flow of the fluid becomes even higher, which results in increasing water-oil ratios throughout the life of the well.

4.5 Solutions for the problems:


4.5.1 solution of coning by Squeeze cement

- Perforation at or close to OWC.
- Squeeze cement into the formation
- Formation of impermeable barriers.
- Not expensive and can use below short thickness oil pay

4.5.2 Solution of channeling by polymer: Polymer Flooding

Another common technique for water shutoff operations is the usage of the polymer flooding

method to increase the viscosity of the water. This technique is applied to increase the viscosity of the drive fluid (water) which helps in mobilizing and displacing the oil in the reservoir matrix rock. This technique is usually applied in the reservoir far from the production wells through water injection wells to achieve better sweeping efficiency in the reservoir. That eventually leads to preventing excessive water production. The usage of polymer flooding is very common among the oil operators and it can be prepared by dissolving the polymers in the injected water and inject it through injection wells. Polymers used in this technique are usually two types: biopolymers and synthetic polymers. Biopolymers' advantages over the synthetics are that they are not affected by the salinity of the water and they are insensitive to the mechanical degradations. However, they are more expensive than synthetic polymers so we will not use it. Synthetic polymers are more common since they are cheaper, more available, and perform well with low-salinity water. Polyacrylamide (PAM) and hydrolyzed polyacrylamide (HPAM) are two types of synthetic polymers. Polymers can also play a role in reducing the permeability if the molecular weight is increased Sydansk, D.and Romero-Zeron, L 2011]. Finally, based on the characteristics of the reservoir and the economics of the operations, the right polymer is chosen in case of chemical injection.we well use these type of polymer because it is not expensive and the salinity of water is not high salinity.

To do injection polymer to reservoir there are Screening Parameters

- Gravity > 18°API
- Viscosity < 200 cp
- Oil saturation > 10% PV mobile oil
- Formation type sandstone / carbonate
- Net thickness not critical
- Average permeability > 20 md
- Transmissibility not critical
- Depth < 9,000 feet
- Temperature <225 ° F

Sharyoof Reservoir properties is:

- Oil density = 31.5 API
- Oil Viscosity=4.5 cp
- Average permeability
- Depth < 9,000 feet
- Average permeability > 20 md

When we apply this Screening Parameters in Sharyoof field we conclude that we can apply polymer flooding in Sharyoof field.

CHAPTER 5

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY AND CONCLUSIONS

The objectives of this work are to understand field and wells performance and application of diagnostic plots to analyse water production problems.

This project applied Chan method and identified the reason of high excessive water production, The three wells located in sandstone reservoir with high vertical and horizontal permeability and high water saturation of the formation well set the conning phenomenon important reason of water production.

- The performance of sharyoof field and some individual well and it's event were exhibit in plots.
- The problem of multi-layered channelling was diagnosed.
- For effective evaluation of water production and injection behaviour of wells
 in a reservoir, there is need to verify the applicability of any of the available
 diagnostic methods to the particular field of interest. This would ensure that
 accurate diagnoses are derived to provide the necessary information for
 planning water management programmes in the field.

5.2 RECOMMENDATIONS

The following recommendations are presented for future research work to improve the proposed methodology and results obtained in this study:

- A performance evaluation of water injection and sweep efficiency by for oil by water.
- A fine grid scale and more representative reservoir model should be built of the Case Study to conduct a history match of the production and injection data to improve the diagnostic procedure developed in this study.
- Apply multi scenario of polymer injection to increase ultimate recovery of oil

5.3 Limitations of our project

- 1-lacking of the real information.
- 2-Not having the opportunity to go to the location of wells and do some tests for the project.
- 3-the difficulty to obtain the required data.
- 4-Not having enough time to mention more details.

References

Seright, R. S., R. H. Lane, and R.D. Sydansk. 2003. A Strategy for Attacking Excess Water Production. SPE 70067. In SPE Production and Facilities.

Al Hasani, Majid A, Saif R. Al Khayari, Rashid S. Al Maamari, and Majid A. Al Wadhahi. 2008. Diagnosis of excessive water production in horizontal wells using WOR plots. In International Petroleum Technology Conference Kuala lumpur, Malaysia.

Du, Y., L. Guan, and H. Liang. 2005. Advances Of Produced Water Management. In 6th Canadian International Petroleum Conference. Alberta, Canada: Canadian Institute of Mining, Metallurgy & Petroleum.

Sanchez, P.Z., M.A. Delgado, V.H. Quinones. 2007. Water Control in Heavy-Oil Mature Field, Block 1AB. SPE 108039. In SPE Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina.

Seright, R S. 1998. Improved Methods for Water Shutoff. Final Technical Progress Report (U.S. DOE Report DOE/PC/91008-14), U.S. DOE Contract DE-AC2294PC91008, BDM-Oklahoma Subcontract G4S60330

Rabiei i, M., R. Gupta, Y.P. Cheong, G.S. Soto. 2009. Excess water production diagnosis in oil fields using ensemble classifiers. International Conference on Computational Intelligence and Software Engineering. Wuhan, China. IEEE 10.1109/CISE.2009, pp. 1-4

Rabiei, M., R. Gupta, Y.P. Cheong, G.S. Soto. 2010. A Novel Approach in Extracting Predictive Information From Water-Oil Ratio For Enhanced Water Production ...Mechanism Diagnosis. APPEA Journal APPEA Journal 50, pp. 567-579

Rabiei, M., R. Gupta, Y.P. Cheong, G.S. Soto. 2010. Transforming data into knowledge using data mining techniques: application in excess water production problem diagnosis in oil wells. SPE 133929. In SPE Asia Pacific Oil and Gas Conference & Exhibition (APOGCE), Brisbane, Australia.

Refre nce:

- Bill Bailey, Mike Crabtree, Jeb Tyrie(2000), "Water Control".
- Mahmoud Abu El Ela, Ismail Mahgoub, Khaled Mahmoud(2007), "Approach Diagnoses, Reduces Water Cut".
- Du, Y., L. Guan, and H. Liang. 2005. Advances Of Produced Water Management. In 6th Canadian International Petroleum Conference. Alberta, Canada: Canadian Institute of Mining, Metallurgy & Petroleum.
- Seright, R. S., R. H. Lane, and R.D. Sydansk. 2003. A Strategy for Attacking Excess Water Production. SPE 70067. In SPE Production and Facilities.
- Al Hasani, Majid A, Saif R. Al Khayari, Rashid S. Al Maamari, and Majid A. Al Wadhahi.
 2008. Diagnosis of excessive water production in horizontal wells using WOR plots.
 In International Petroleum Technology Conference Kuala lumpur, Malaysia.
- Sanchez, P.Z., M.A. Delgado, V.H. Quinones. 2007. Water Control in Heavy-Oil Mature Field, Block 1AB. SPE 108039. In SPE Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina.
- Seright, R S. 1998. Improved Methods for Water Shutoff. Final Technical Progress
 Report (U.S. DOE Report DOE/PC/91008-14), U.S. DOE Contract DE-AC2294PC91008,
 BDM-Oklahoma Subcontract G4S60330.
- Rabiei, M., R. Gupta, Y.P. Cheong, G.S. Soto. 2009. Excess water production diagnosis in oil fields using ensemble classifiers. International Conference on Computational Intelligence and Software Engineering. Wuhan, China. IEEE 10.1109/CISE.2009, pp. 1-4.
- Rabiei, M., R. Gupta, Y.P. Cheong, G.S. Soto. 2010. A Novel Approach in Extracting Predictive Information From Water-Oil Ratio For Enhanced Water Production Mechanism Diagnosis. APPEA Journal APPEA Journal 50, pp. 567-579.
- Rabiei, M., R. Gupta, Y.P. Cheong, G.S. Soto. 2010. Transforming data into knowledge using data mining techniques: application in excess water production problem diagnosis in oil wells. SPE 133929. In SPE Asia Pacific Oil and Gas Conference & Exhibition (APOGCE), Brisbane, Australia.
- Seright, R.S.: "Improved Methods for Water Shutoff," Annual Technical Progress Report (U.S. DOE Report DOE/PC/91008-4), U.S. DOE Contract DE-AC22-94PC91008, BDM-Oklahoma Subcontract G4S60330 (Nov. 1997).
- Burov,A.;Kharrat,W.;Hussein,N.A.InnovativeCoiledTubingWaterShutoffTechniquesin HorizontalWells. Presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, USA, 15–17 February 2012.
- Yortsos, Y.C.; Choi, Y.; Yang, Z.; Shah, P.C. Analysis and Interpretation of Water/Oil Ratio in Waterfloods. SPE J. 1999, 4, 413–424. [CrossRef]
- Fayzullin, M.; Tippel, P.; Gonzalez, J.; Egger, S. Understanding Excessive Water Productioni nHighly Faulted Mature Gas Condensate Field: From Well Operations to Revival of Integrated History Matching. Presented at the IADC/SPE Asia Pacific Drilling Technology Conference, Bangkok, Thailand, 25–27 August 2014.
- Olarte, J.D.; Haldar, S.; Said, R.; Ahmed, M.; Burov, A.; Stuker, J.; Kharrat, W.; Wortman, H. New Approach of Water Shut off Techniques in Open Holes and World First Applications of Using Fiber Optic Services With Tension-Compression Sub. Presented at SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 15–18 May 2011.

- Al-Zain, A.; Duarte, J.; Haldar, S. Successful Utilization of Fiber Optic Telemetry Enabled Coiled Tubing for Water Shut-off on a Horizontal Oil Well in Ghawar Field. Presented at the SPE Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 9–11 May 2009.
- Al Hasani, M.A.; Al Khayari, S.R.; Al Maamari, R. Diagnosis of Excessive Water Production in Horizontal Wells Using WOR Plots. IPTC-11958-MS. Presented at the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 3–5 December 2008.
- Ahmad,N.;Al-Shabibi,H.;Malik,S.ComprehensiveDiagnosticandWaterShut-off inOpenandCasedHole Carbonate Horizontal Wells. Presented at the Abu Dhabi International Petroleum Exhibition and conference, Abu Dhabi, UAE, 11–12 November 2012.
- Economides, M.J.; Hill, A.D.; Ehlig-Economides, C. Petroleum Production Systems, 18th ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2008.
- Ilk, D., L. Mattar, and T. A. Blasingame. 2007. Production Data Analysis—Future Practices For Analysis And Interpretation. In 8th Canadian International Petroleum Conference. Calgary, Canada: Petroleum Society, Canadian Institute of Mining, Metallurgy and Petroleum.
- Bailey, Bill, J. Tyrie, J. Elphick, F Kuchuk, C Romano, and L Roodhart. 2000. Water Control. Oilfield Review, Schlumberger 12 (1): 30-51.
- Bondar Valentina, 1997, The Analysis and Interpretation of Water- Oil Ratio
 Performance in Petroleum Reservoir, Moscow State Academy of Oil and Gas, Russia.
- Ershaghi, I. And Omoregie, O. A method for Extrapolation of water cut versus recovery plots", JPT (February 1978), 203-204
- Ershaghi, I. And Omoregie, O. A method for Extrapolation of water cut versus recovery plots", JPT (February 1978), 203-204
- Jarrel P. M. and Stein M. H. 1991 Maximizing Injection Rates in Wells Recently Converted to Injection Using Hearn and Hall Plots. Paper SPE 21724 presented at the SPE Petroleum Operations Symposium, Oklahoma City, Oklahoma April 7-9
- Chan, K.S.: Water Control Diagnostic Plots, paper SPE 30775, SPE Annual Technical Conference and Exhibition, Dallas, October 22-25
- Seright, R.S.: "Improved Methods for Water Shutoff," Annual Technical Progress Report (U.S. DOE Report DOE/PC/91008-4), U.S. DOE Contract DE-AC22-94PC91008, BDM-Oklahoma Subcontract G4S60330 (Nov. 1997)
 - Zeinijahromi, A.; Bedrikovetski, P. Controlling Excessive Water Production Using Induced Formation Damage.
 - PresentedattheSPEEuropeanFormationDamageConferenceandExhibition,Budapest,H ungary, 3–5 June 2015.

Surguchev, L.M. Water Shut-Off: Simulation and Laboratory Evaluation. Presented at the European Petroleum Conference, The Hague, The Netherlands, 20–22 October 1998.

Sun, Y.; Fang, Y.; Chen, A. Gelation Behavior Study of a Resorcinol-Hexamethyleneteramine Crosslinked Polymer Gel for Water Shut-Off Treatment in Low Temperature and High Salinity Reservoirs. Energies 2017, 10, 913. [CrossRef] Sydansk, D.; Romero-Zeron, L. ReservoirConformanceImprovement, 1st ed.; Society of Petroleum Engineers: Richardson, TX, USA, 2011.

- Sydansk, D.; Romero-Zeron, L. ReservoirConformanceImprovement, 1st ed.; Society of Petroleum Engineers: Richardson, TX, USA, 2011.
- Al-Dhafeeri, A.M.; Nasr-El-Din, H.A.; Al-Harith, A.M. Evaluation of Rigless Water Shutoff Treatments to Be Used in Arab-C Carbonate Reservoir in Saudi Arabia. Presented at the CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, AB, Canada, 16–19 June 2008.
- Gharbi, R.; Alajmi, A.; Algharaib, M. The Potential of a Surfactant/Polymer Flood in a Middle Eastern Reservoir. Energies 2012, 5, 58–70. [CrossRef]
- Ahmad,N.;Al-Shabibi,H.;Malik,S.ComprehensiveDiagnosticandWaterShut-off inOpenandCasedHole Carbonate Horizontal Wells. Presented at the Abu Dhabi International Petroleum Exhibition and conference, Abu Dhabi, UAE, 11–12 November 2012.
- Permana, D.; Ferdian, G.; Aji, M.; Siswati, E. Extracting Lessons Learned of 35 Water Shut-off Jobs in Mature Fields to Improve Success Ration of Water Shut-off Job.
 Presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, Indonesia, 20–22 October 2015.
- Denney, D. Factors Affecting Mechanical Water Shutoff. J. Pet. Technol. 2001, 53, 58–59. [CrossRef]
- Offenbacher, M.; Gadiyar, B.; Messler, D. Swellable Packer Fluids Designed for Zonal Isolation in Openhole Completions. Presented at the SPE European Formation Damage Conference and Exhibition, Budapest, Hungary, 3–5 June 2015.
- Wilson, P.; Hoffman, C.E. Zonal Isolation in Stimulation Treatments and Gas/Water Shutoff Using Thermally Compensated Inflatable Packers and Plugs. Presented at IADC/SPE Asia Pacific Drilling Technology, Kuala Lumpur, Malaysia, 11–13 September 2000.
- Plante,M.E.;Mackenzie,G.R.J.SelectiveChemicalWaterShutoffsUtilizingThrough-TubingInflatablePacker Technology. Presented at SPE/ICoTA Coiled Tubing Roundtable, Houston, TX, USA, 5–6 April 2000.
- Lizak, K.F.; Zeltmann, T.A.; Crook, R.J. Permian Basin Operators Seal Casing Leaks with Small-Particle Cement. Presented at SPE Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 18–20 March 1992.
- Meek, J.W.; Harris, K. Repairing Casing Leaks Using Small-Particle-Size Cement. SPE Prod. Facil. 1993, 8, 45–50. [CrossRef]
- Bybee, K. Unique Rigless Casing Leak Repair. J. Pet. Technol. 2001, 53, 28–29.
 [CrossRef]

Appendix

SHARYOOF-002

Water	Oil	
		Date
0	6028	1/3/2002
0	10199	1/4/2002
0	9061	1/5/2002
0	8621.5	1/6/2002
0	8272.71	1/7/2002
0	6465.21	1/8/2002
0	8519.42	1/9/2002
0	7880.45	1/10/2002
0	7945.18	1/11/2002
0	7885.71	1/12/2002
0	7726.39	1/13/2002
0	7718.4	1/14/2002
0	8075.41	1/15/2002
0	8337.75	1/16/2002
0	8269.88	1/17/2002
0	8393.16	1/18/2002
0	8300.14	1/19/2002
0	8416.63	1/20/2002
0	8662.97	1/21/2002
0	8804.99	1/22/2002
0	8712.91	1/23/2002
0	8689.24	1/24/2002
0	8693.46	1/25/2002
0	8600.14	1/26/2002
0	8694.7	1/27/2002
0	7490.27	1/28/2002
0	9022.25	1/29/2002
0	8864.89	1/30/2002
0	8990.8	1/31/2002
0	8812.74	2/1/2002
0	9187.59	2/2/2002
0	7516.73	2/3/2002
0	8223	2/4/2002
0	8310	2/5/2002
0	8505.08	2/6/2002
0	7759.66	2/7/2002
0	8884.15	2/8/2002
0	8660.49	2/9/2002
0	8984.5	2/10/2002

0	8739.43	2/11/2002
0	8893.03	2/12/2002
0	8792.71	2/13/2002
0	8768.05	2/14/2002
0	8879.97	2/15/2002
0	8812.54	2/16/2002
0	8769.54	2/17/2002
0	7790.85	2/18/2002
0	8837.51	2/19/2002
0	8969.49	2/20/2002
0	8792.86	2/21/2002
0	8736.6	2/22/2002
0	8806.63	2/23/2002
0	8747.03	2/24/2002
0	8733.27	2/25/2002
0	8654.68	2/26/2002
0	8625.32	2/27/2002
0	8608.5	2/28/2002
0	9468	3/1/2002
0	10194	3/2/2002
0	9246	3/3/2002
0	9421	3/4/2002
0	9267	3/5/2002
0	9309	3/6/2002
0	9354	3/7/2002
0	9319	3/8/2002
0	9395	3/9/2002
0	9370	3/10/2002
0	9352	3/11/2002
0	9464	3/12/2002
0	6860	3/13/2002
0	9164	3/14/2002
0	9404	3/15/2002
0	9446	3/16/2002
0	9421	3/17/2002
0	9457	3/18/2002
0	9415	3/19/2002
0	9378	3/20/2002
0	9398	3/21/2002
0	9443	3/22/2002
0	9290	3/23/2002
0	9264	3/24/2002
0	9083	3/25/2002
0	9314	3/26/2002
0	8945	3/27/2002
0	9054	3/28/2002
0	9359	3/29/2002
0	9737	3/30/2002

0	7864	3/31/2002
0	9325	4/1/2002
0	9105	4/2/2002
0	9593	4/3/2002
0	9039	4/4/2002
0	9389	4/5/2002
0	9408	4/6/2002
0	8868	4/7/2002
0	9298	4/8/2002
0	9169	4/9/2002
0	9177	4/10/2002
0	9130	4/11/2002
0	4565	4/12/2002
0	6400	4/13/2002
0	9225	4/14/2002
0	9145	4/15/2002
0	9156	4/16/2002
0	9059	4/17/2002
0	9032	4/18/2002
0	9000	4/19/2002
0	8966	4/20/2002
0	8996	4/21/2002
0	8985	4/22/2002
0	8992	4/23/2002
0	8470	4/24/2002
0	8859	4/25/2002
0	8712	4/26/2002
0	8635	4/27/2002
0	8563	4/28/2002
0	8502	4/29/2002
0	8444	4/30/2002
0	8403	5/1/2002
0	8363	5/2/2002
0	8310	5/3/2002
0	8294	5/4/2002
0	8261	5/5/2002
0	8240	5/6/2002
0	8240	5/7/2002
0	8226	5/8/2002
0	8198	5/9/2002
0	8187	5/10/2002
0	8166	5/11/2002
0	7655	5/12/2002
0	8170	5/13/2002
0	8153	5/14/2002
0	8138	5/15/2002
0	8147	5/16/2002
0	8175	5/17/2002

0	4691	5/18/2002
0	8772	5/19/2002
0	7722	5/20/2002
0	8170	5/21/2002
0	8208	5/22/2002
0	8181	5/23/2002
0	8035	5/24/2002
0	8256	5/25/2002
0	8043	5/26/2002
0	7993	5/27/2002
0	7974	5/28/2002
0	7925	5/29/2002
0	7904	5/30/2002
0	7897	5/31/2002
0	7871	6/1/2002
0	7875	6/2/2002
0	7862	6/3/2002
0	7869	6/4/2002
0	7825	6/5/2002
0	7839	6/6/2002
0	7846	6/7/2002
0	7591	6/8/2002
0	7311	6/9/2002
0	6401	6/10/2002
0	7164	6/11/2002
0	7125	6/12/2002
0	7126	6/13/2002
0	7140	6/14/2002
0	7109	6/15/2002
0	7114	6/16/2002
0	7386	6/17/2002
0	7574	6/18/2002
0	7448	6/19/2002
0	7492	6/20/2002
0	7471	6/21/2002
0	7700	6/22/2002
0	7867	6/23/2002
0	8115	6/24/2002
0	8240	6/25/2002
0	8466	6/26/2002
0	8618	6/27/2002
0	8584	6/28/2002
0	8583	6/29/2002
0	8527	6/30/2002
0	8534	7/1/2002
0	8658	7/2/2002
0	8666	7/3/2002
0	8120	7/4/2002

0	8580	7/5/2002
0	8570	7/6/2002
0	8596	7/7/2002
0	8542	7/8/2002
0	8774	7/9/2002
0	8321	7/10/2002
0	8517	7/11/2002
0	8493	7/12/2002
0	8521	7/13/2002
0	8526	7/14/2002
0	8472	7/15/2002
0	8504	7/16/2002
0	8489	7/17/2002
0	8488	7/18/2002
0	8475	7/19/2002
0	8465	7/20/2002
0	8451	7/21/2002
0	8518	7/22/2002
0	8437	7/23/2002
0	8159	7/24/2002
0	8381	7/25/2002
0	8506	7/26/2002
0	8601	7/27/2002
0	8604	7/28/2002
0	8429	7/29/2002
0	8518	7/30/2002
0	8555	7/31/2002
0	8344	8/1/2002
0	8594	8/2/2002
0	8463	8/3/2002
0	8593	8/4/2002
0	8459	8/5/2002
0	8530	8/6/2002
0	8504	8/7/2002
0	8544	8/8/2002
0	8521	8/9/2002
0	8547	8/10/2002
0	8510	8/11/2002
0	8541	8/12/2002
0	8012	8/13/2002
0	8571	8/14/2002
0	7735	8/15/2002
0	8592	8/16/2002
0	8540	8/17/2002
0	8516	8/18/2002
0	8517	8/19/2002
0	8568	8/20/2002
0	8507	8/21/2002

0	8884	8/22/2002
0	5834	8/23/2002
0	9166	8/24/2002
0	9472	8/25/2002
0	9489	8/26/2002
0	9450	8/27/2002
0	8196	8/28/2002
0	9261	8/29/2002
0	9158	8/30/2002
0	9141	8/31/2002
0	8945	9/1/2002
0	9052	9/2/2002
0	9057	9/3/2002
0	8954	9/4/2002
0	9009	9/5/2002
0	8893	9/6/2002
0	8475	9/7/2002
0	8914	9/8/2002
0	9041	9/9/2002
0	8949	9/10/2002
0	8814	9/11/2002
0	8788	9/12/2002
0	8863	9/13/2002
0	8859	9/14/2002
0	8850	9/15/2002
0	8846	9/16/2002
0	8836	9/17/2002
0	8844	9/18/2002
0	8843	9/19/2002
0	8851	9/20/2002
0	8860	9/21/2002
0	8839	9/22/2002
0	8843	9/23/2002
0	8856	9/24/2002
0	8835	9/25/2002
0	8824	9/26/2002
0	8854	9/27/2002
0	8852	9/28/2002
0	8854	9/29/2002
0	8861	9/30/2002
0	8848	10/1/2002
0	8836	10/2/2002
0	8862	10/3/2002
0	8916	10/4/2002
0	9073	10/5/2002
0	8376	10/6/2002
0	9069	10/7/2002
0	9132	10/8/2002

0	7302	10/9/2002
0	7083	########
0	9891	########
0	9596	########
0	9412	########
0	9272	########
0	9182	########
0	9129	########
0	8830	########
0	9029	########
0	8993	########
0	8961	########
0	8668	########
0	8939	########
0	8896	########
0	8932	########
0	8926	########
0	8905	########
0	8914	########
0	8897	########
0	8893	########
0	8883	########
0	8895	########
0	8950	11/1/2002
0	9016	11/2/2002
0	9056	11/3/2002
0	9075	11/4/2002
0	9117	11/5/2002
0	9107	11/6/2002
0	9139	11/7/2002
0	9113	11/8/2002
0	9066	11/9/2002
0	9053	########
0	9046	########
0	8471	########
0	8924	########
0	8763	########
0	9037	########
0	8751	########
0	8938	########
0	8856	########
0	8820	########
0	8783	########
0	8836	########
0	8913	########
0	8839	########
0	8850	########
0	8726	########

0	8684	########
0	8676	########
0	8675	########
0	8641	########
0	8627	########
0	8613	12/1/2002
0	8604	12/1/2002
_		
0	8582	12/3/2002
0	8136	12/4/2002
0	8556	12/5/2002
0	8559	12/6/2002
0	8569	12/7/2002
0	8543	12/8/2002
0	8557	12/9/2002
0	8542	########
0	8537	########
0	8541	########
0	8523	########
0	8537	########
0	8518	########
0	8520	########
0	8510	########
0	8506	#######
0	8499	#######
0	8487	########
0	8500	########
0	8514	########
0	8469	########
0	8585	########
0	8566	########
0	8604	########
0	8390	########
0	8651	########
0	8590	########
0	8565	########
0	8568	########
0	8568	1/1/2003
0	8571	1/2/2003
		1/3/2003
0	8576	
0	8632	1/4/2003
0	8614	1/5/2003
0	8627	1/6/2003
0	8537	1/7/2003
0	8571	1/8/2003
0	8556	1/9/2003
0	8553	1/10/2003
0	8519	1/11/2003
0	8528	1/12/2003

0	8539	1/13/2003
0	8541	1/14/2003
0	8522	1/15/2003
0	8517	1/16/2003
0	8588	1/17/2003
0	8441	1/18/2003
0	8507	1/19/2003
0	8489	1/20/2003
0	8501	1/21/2003
0	8483	1/22/2003
0	4454	1/23/2003
0	8713	1/24/2003
0	8650	1/25/2003
0	8587	1/26/2003
79	8475	1/27/2003
77	8457	1/28/2003
77	8445	1/29/2003
77	8430	1/30/2003
85	8389	1/31/2003
85	8379	2/1/2003
85	8378	2/2/2003
85	8366	2/3/2003
85	8372	2/4/2003
85	8363	2/5/2003
85	8366	2/6/2003
85	8349	2/7/2003
102	8336	2/8/2003
119	8316	2/9/2003
127	8299	2/10/2003
152	8247	2/11/2003
168	8231	2/12/2003
168	8217	2/13/2003
168	8217	2/14/2003
168	8229	2/15/2003
168	8214	2/16/2003
167	8182	2/17/2003
167	8168	2/18/2003
168	8205	2/19/2003
189	8183	2/20/2003
210	8160	2/21/2003
217	8128	2/22/2003
226	8134	2/23/2003
230	8134	2/24/2003
251	8102	2/25/2003
243	8112	2/26/2003
243	8113	2/27/2003
237	7650	2/28/2003
250	8063	3/1/2003
_00	5555	S, 2000

250	8055	3/2/2003
249	8050	3/3/2003
249	8039	3/4/2003
250	8052	3/5/2003
249	8040	3/6/2003
249	8044	3/7/2003
249	8041	3/8/2003
249	8036	3/9/2003
283	8016	3/10/2003
295	8120	3/11/2003
295	8111	3/12/2003
304	8133	3/13/2003
311	8090	3/14/2003
305	7712	3/15/2003
326	8242	3/16/2003
348	8132	3/17/2003
356	8106	3/18/2003
359	7973	3/19/2003
356	7914	3/20/2003
356	7903	3/21/2003
371	7864	3/22/2003
377	7818	3/23/2003
304	6436	3/24/2003
375	7774	3/25/2003
210	4158	3/26/2003
412	8162	3/27/2003
412	7814	3/28/2003
584	9135	3/29/2003
586	9172	3/30/2003
585	9162	3/31/2003
582	9111	4/1/2003
427	7612	4/2/2003
437	8299	4/3/2003
478	8203	4/4/2003
478	8203	4/5/2003
487	8204	4/6/2003
504	8183	4/7/2003
520	8146	4/8/2003
514	8050	4/9/2003
525	8217	4/10/2003
522	8169	4/11/2003
520	8146	4/12/2003
538	8134	4/13/2003
563	8089	4/14/2003
595	8025	4/15/2003
596	8042	4/16/2003
597	8047	4/17/2003
570	8058	4/18/2003

568	8032	4/19/2003
568	8032	4/20/2003
565	7996	4/21/2003
588	7931	4/22/2003
460	6099	4/23/2003
663	7829	4/24/2003
655	7742	4/25/2003
670	7705	4/26/2003
669	7685	4/27/2003
666	7650	4/28/2003
662	7607	4/29/2003
657	7551	4/30/2003
655	7522	5/1/2003
654	7522 7516	5/2/2003
682	7431	5/3/2003
731	6960	5/4/2003
771	7341	5/5/2003
796	7319	5/6/2003
806	7249	5/7/2003
810	7284	5/8/2003
815	7251	5/9/2003
831	7233	5/10/2003
843	7185	5/11/2003
853	7188	5/12/2003
856	7137	5/13/2003
864	7131	5/14/2003
872	7128	5/15/2003
877	7089	5/16/2003
927	7062	5/17/2003
953	6988	5/18/2003
982	6995	5/19/2003
993	6948	5/20/2003
1005	6968	5/21/2003
1003	6905	5/22/2003
1027	6928	5/23/2003
1021	6892	5/24/2003
1048	6892	5/25/2003
1045	6872	5/26/2003
1030	6894	5/27/2003
1007	6918	5/28/2003
1024	6909	5/29/2003
1071	6863	5/30/2003
1077	6841	5/31/2003
1078	6846	6/1/2003
1071	6859	6/2/2003
1085	6831	6/3/2003
1101	6817	6/4/2003
1093	6827	6/5/2003

1098	6797	6/6/2003
1004	6214	6/7/2003
1109	6813	6/8/2003
1116	6798	6/9/2003
1114	6781	6/10/2003
1114	6844	6/11/2003
1125	6792	6/12/2003
1142	6783	6/13/2003
1168	6724	6/14/2003
1169	6729	6/15/2003
1168	6722	
		6/16/2003
1180	6687	6/17/2003
1182	6695	6/18/2003
1262	6625	6/19/2003
1261	6618	6/20/2003
1263	6628	6/21/2003
1262	6623	6/22/2003
1262	6622	6/23/2003
1285	6598	6/24/2003
1285	6594	6/25/2003
1293	6591	6/26/2003
1292	6585	6/27/2003
1317	6663	6/28/2003
1220	6173	6/29/2003
1310	6580	6/30/2003
1324	6556	7/1/2003
1323	6549	7/2/2003
1332	6545	7/3/2003
1339	6537	7/4/2003
1340	6540	7/5/2003
1339	6538	7/6/2003
1371	6505	7/7/2003
1181	5604	7/8/2003
1383	6564	7/9/2003
1371	6554	7/10/2003
1370	6549	7/11/2003
1386	6531	7/12/2003
1383	6520	7/13/2003
1407	6498	7/14/2003
1405	6487	7/15/2003
1417	6495	7/16/2003
1420	6509	7/17/2003
1407	6450	7/18/2003
1409	6462	7/19/2003
1326	6207	7/20/2003
1298	5950	7/21/2003
1316	5992	7/22/2003
1320	6012	7/23/2003
1320	0012	1/23/2003

1318	5923	7/24/2003
1357	5938	7/25/2003
1374	5933	7/26/2003
1366	5898	7/27/2003
1358	5824	7/28/2003
1391	5927	7/29/2003
1391	5929	7/30/2003
1437	6005	7/31/2003
1473	6003	8/1/2003
1526	6178	8/2/2003
1532	6089	8/3/2003
1549	6079	8/4/2003
1554	6024	8/5/2003
1572	6057	8/6/2003
1526	5845	8/7/2003
1611	6095	8/8/2003
1614	5999	8/9/2003
1630	6059	8/10/2003
1668	6052	8/11/2003
1652	5889	8/12/2003
1697	5947	8/13/2003
1694	5901	8/14/2003
1694	5834	8/15/2003
1744	5805	8/16/2003
1792	5769	8/17/2003
1843	5710	8/18/2003
1882	5705	8/19/2003
1841	5672	8/20/2003
1793	5495	8/21/2003
1839	5547	8/22/2003
1890	5464	8/23/2003
1911	5439	8/24/2003
1949	5405	8/25/2003
1991	5493	8/26/2003
1994	5475	8/27/2003
2003	5442	8/28/2003
2011	5437	8/29/2003
-		
2022	5411	8/30/2003
2016	5451	8/31/2003
2037	5479	9/1/2003
2055	5446	9/2/2003
2109	5422	9/3/2003
2101	5403	9/4/2003
2108	5394	9/5/2003
2176	5513	9/6/2003
2089	5318	9/7/2003
2113	5354	9/8/2003
2123	5325	9/9/2003
0	3020	2, 0, 2000

2117	5338	9/10/2003
2193	5422	9/11/2003
2201	5389	9/12/2003
2203	5394	9/13/2003
2150	5369	9/14/2003
2177	5383	9/15/2003
2194	5399	9/16/2003
2241	5381	9/17/2003
2256	5366	9/18/2003
2241	5381	9/19/2003
2249	5374	9/20/2003
2263	5382	9/21/2003
2261	5379	9/22/2003
2274	5384	9/23/2003
2297	5438	9/24/2003
2295	5431	9/25/2003
2273	5304	9/26/2003
2333	5366	9/27/2003
2358	5424	9/28/2003
2290	5242	9/29/2003
2374	5384	9/30/2003
2357	5346	10/1/2003
2342	5311	10/2/2003
2361	5330	10/3/2003
2368	5295	10/4/2003
2477	5411	10/5/2003
2404	5276	10/6/2003
2398	5119	10/7/2003
2407	5162	10/8/2003
2417	5207	10/9/2003
2480	5245	########
2443	5190	########
2460	5204	#######
2530	5184	########
2512	5194	########
2515	5200	########
1237	2604	#######
2618	5537	########
2626	5379	#######
2600	5231	#######
2620	5247	#######
2669	5227	#######
2602	5142	#######
2602	5119	#######
2646	5114	########
2601	5186	########
2584	5222	#######
2471	4949	#######

2612	5279	########
2574	5226	########
2575	5228	########
2650	5333	########
2561	5153	11/1/2003
2514	5058	11/2/2003
2505	5041	11/3/2003
2599	5137	11/4/2003
2586	5087	11/5/2003
2666	5245	11/6/2003
2591	5007	11/7/2003
2704	5111	11/8/2003
2663	4989	11/9/2003
2650	5032	########
2629	4992	########
2664	5036	########
2625	4984	#######
2772	5286	#######
1813	3456	########
2737	5128	########
2869	5399	########
2757	5212	########
2830	5278	########
2800	5200	########
2769	5142	########
2862	5132	########
2925	5201	########
2864	5092	########
2913	5068	########
2772	4823	########
2880	4903	########
3016	5070	########
3071	5031	########
3103	5041	########
3141	5060	12/1/2003
3112	5013	12/2/2003
3095	4987	12/3/2003
3070	4946	12/4/2003
3049	4912	12/5/2003
3019	4926	12/6/2003
3071	4968	12/7/2003
3036	4890	12/8/2003
3064	4956	12/9/2003
3030	4799	#######
3041	4878	#######
3038	4853	########
3003	4817	########
3043	4840	########
	-	

0050	4704	
2858	4784	#######
3135	5008	#######
3141	5017	#######
3066	5045	########
3027	4960	########
3071	4906	########
3129	4998	#######
3106	4941	########
3106	5025	########
3104	5022	########
3101	5017	########
3118	5023	########
3149	5008	########
3153	4974	#######
3154	4954	#######
3165	4930	#######
3174	4944	########
4089	4820	6/1/2004
4209	4800	6/2/2004
4206	4426	6/3/2004
3989	4683	6/4/2004
4087	4798	6/5/2004
4153	4790 4791	6/6/2004
	_	
4181	4690 4665	6/7/2004
4109	4665	6/8/2004
4121	4679	6/9/2004
4183	4628	6/10/2004
4255	4734	6/11/2004
4198	4825	6/12/2004
4262	4811	6/13/2004
4283	4825	6/14/2004
4365	4799	6/15/2004
4342	4827	6/16/2004
4367	4811	6/17/2004
4459	4832	6/18/2004
4460	4837	6/19/2004
4537	4850	6/20/2004
4549	4895	6/21/2004
4519	4880	6/22/2004
4504	4887	6/23/2004
4529	4887	6/24/2004
4602	4867	6/25/2004
4565	4848	6/26/2004
4658	4837	6/27/2004
4666	4685	6/28/2004
4538	4744	6/29/2004
4576	4744 4744	6/30/2004
4576	4744 4722	7/1/2004
4001	7122	1/1/2004

4662	4775	7/2/2004
4677	4772	7/3/2004
4728	4823	7/4/2004
4745	4861	7/5/2004
4761	4857	7/6/2004
4434	4578	7/7/2004
4024	4057	7/8/2004
4376	4465	7/9/2004
4525	4525	7/10/2004
4606	4643	7/11/2004
4487	4614	7/12/2004
4730	4730	7/13/2004
4678	4603	7/14/2004
4662	4552	7/15/2004
4621	4530	7/16/2004
4665	4500	7/17/2004
4685	4520	7/18/2004
4834	4608	7/19/2004
4679	4550	7/20/2004
4638	4546	7/21/2004
4696	4458	7/22/2004
4709	4400	7/23/2004
4700	4409	7/24/2004
4759	4464	7/25/2004
4661	4337	7/26/2004
4523	4226	7/27/2004
4040	3774	7/28/2004
3984	3737	7/29/2004
3866	3612	7/30/2004
3794	3573	7/31/2004
3712	3454	8/1/2004
3652	3371	8/2/2004
3599	3403	8/3/2004
3685	3416	8/4/2004
3647	3353	8/5/2004
3644	3297	8/6/2004
6847	3241	8/7/2004
4479	3247	8/8/2004
4507	3142	8/9/2004
4514	3208	8/10/2004
4548	3183	8/11/2004
4743	3315	8/12/2004
4920	3511	8/13/2004
4924	3543	8/14/2004
4609		
	3381	8/15/2004
4930	1249	8/16/2004
4915	1229	8/17/2004
4983	3485	8/18/2004

5021	3493	8/19/2004
5123	3449	8/20/2004
5179	3470	8/21/2004
5192	3520	8/22/2004
5234	3559	8/23/2004
5231	3587	8/24/2004
	3483	
5207		8/25/2004
5199	3862	8/26/2004
5315	3910	8/27/2004
5409	3445	8/28/2004
5573	3528	8/29/2004
5989	3408	8/30/2004
5971	3512	8/31/2004
6042	3541	9/1/2004
6158	3578	9/2/2004
6243	3564	9/3/2004
6314	3569	9/4/2004
6318	3548	9/5/2004
6349	3653	9/6/2004
6341	3703	9/7/2004
6359	3733	9/8/2004
6326	3773	9/9/2004
6284	3668	9/10/2004
6270	3649	9/11/2004
6311	3653	9/12/2004
6311	3668	9/13/2004
6323	3665	9/14/2004
6263	3722	9/15/2004
6322	3726	9/16/2004
5483	3129	9/17/2004
6400	3712	9/18/2004
6384	3712	9/19/2004
6393	3747	9/20/2004
6424	3677	9/21/2004
6384	3714	9/22/2004
6371	3635	9/23/2004
6276	3760	9/24/2004
6285	3608	9/25/2004
6285	3427	9/26/2004
6176	3126	9/27/2004
6307	3111	9/28/2004
6290	3159	9/29/2004
6303	3183	9/30/2004
6275	3248	10/1/2004
6336	3340	10/2/2004
5714	3944	10/3/2004
6331	3813	10/4/2004
6275	3680	10/5/2004

6373	3661	10/6/2004
6229	3720	10/7/2004
6251	3675	10/8/2004
6241	3503	10/9/2004
_	0000	
6235	3487	#######
6393	3374	#######
6378	3297	#######
6379	3260	########
6381	3357	########
6371	3376	#######
6333	3445	########
6400	3405	########
5861	3078	########
6445	3412	########
6461	3417	#######
6376	3479	#######
12661	6852	########
6472	3312	########
6475	3315	########
6494	3327	########
0.0.		
6525	3373	#######
6541	3300	#######
6551	3277	########
6520	3277	########
6524	3245	########
6525	3260	########
6553	3196	11/1/2004
6585	3144	11/2/2004
6614	3144	11/3/2004
6561	2929	11/4/2004
6469	2943	11/5/2004
6420	2923	11/6/2004
6412	2879	11/7/2004
_		
6455	2922	11/8/2004
6528	2889	11/9/2004
6602	2907	#######
6743	2871	########
6794	2969	########
6876	2906	#######
6915	2984	########
6909	2912	########
6999	2936	########
7072	2885	########
7071	2885	#######
6703	3184	########
6888	2999	########
6984	2999 2977	########
7068	2985	#######

6562	2626	########
7178	2890	########
7152	2894	########
7137	2981	########
7116	3040	#######
7226	3006	########
7238	3015	########
7255	2987	########
2986	2986	12/1/2004
2952	2952	12/2/2004
2951	2951	12/3/2004
2957	2957	12/4/2004
2967	2967	12/5/2004
2916	2916	12/6/2004
2886	2886	12/7/2004
2819	2819	12/8/2004
2797	2797	12/9/2004
2844	2844	########
2852	2852	#######
2843	2843	#######
2845	2845	#######
2718	2718	#######
2853	2853	#######
2817	2817	########
2837	2837	########
2841	2841	########
2870	2870	########
2841	2841	########
2784	2784	########
2829	2829	########
2855	2855	#######
2838	2838	########
2797	2797	########
2812	2812	########
2815	2815	########
2817	2817	#######
2775	2775	########
2778	2778	########
2872	2872	########
7290	2881	1/1/2005
7311	2833	1/2/2005
7311	2862	1/3/2005
7320 7291	2857	1/4/2005
_		
7261	2861	1/5/2005
7263	2851	1/6/2005
7254	2850	1/7/2005
7218	2838	1/8/2005
7134	2852	1/9/2005

7132	2850	1/10/2005
7152		
	2858	1/11/2005
7128	2826	1/12/2005
7071	2886	1/13/2005
7110	2867	1/14/2005
7071	2969	1/15/2005
7052	3005	1/16/2005
7036	2991	1/17/2005
6964	3004	1/18/2005
6830	2937	1/19/2005
6958	3018	1/20/2005
7154	2958	1/21/2005
7400	3023	1/22/2005
5985	2446	1/23/2005
7858	3287	1/24/2005
8179	3467	1/25/2005
8265	3602	1/26/2005
8274	3589	1/27/2005
8240	3599	1/28/2005
8159	3616	1/29/2005
8305	3685	1/30/2005
8321	3680	1/31/2005
8327	3678	2/1/2005
8341	3677	2/2/2005
8287	3714	2/3/2005
8334	3728	2/4/2005
8313	3812	2/5/2005
8269	3849	2/6/2005
8279	3814	2/7/2005
8263	3806	2/8/2005
8216	3885	2/9/2005
8222	3902	2/10/2005
8294	3867	2/11/2005
8280	3891	2/12/2005
8360	3842	2/13/2005
8361	3907	2/14/2005
8337	3908	2/15/2005
8026	3753	2/16/2005
8240	3883	2/17/2005
8173	3958	2/17/2005
		2/19/2005
8176	3907	
8204	3900	2/20/2005
8236	3930	2/21/2005
8253	3890	2/22/2005
8260	3876	2/23/2005
8182	3835	2/24/2005
8233	3827	2/25/2005
8183	3801	2/26/2005

8205	3877	2/27/2005
8089	3860	2/28/2005
8056	3814	3/1/2005
7961	3742	3/2/2005
7959	3733	3/3/2005
7969	3657	3/4/2005
7985	3658	3/5/2005
7985	3634	3/6/2005
7992	3672	3/7/2005
7998	3643	3/8/2005
7939	3712	3/9/2005
7981	3665	3/10/2005
8007	3628	3/11/2005
8091	3582	3/12/2005
8034	3663	3/13/2005
8036	3681	3/14/2005
8133	3657	3/15/2005
8134	3669	3/16/2005
8171	3662	3/17/2005
8196	3598	3/18/2005
8203	3627	3/19/2005
8223	3645	3/20/2005
8181	3654	3/21/2005
8206	3695	3/22/2005
8238	3653	3/23/2005
8234	3623	3/24/2005
8244	3633	3/25/2005
8245	3625	3/26/2005
7929	3500	3/27/2005
8220	3660	3/28/2005
8187	3630	3/29/2005
8202	3656	3/30/2005
8179	3641	3/31/2005
8195	3655	4/1/2005
8176	3611	4/2/2005
8181	3635	4/3/2005
8175	3650	4/4/2005
8158	3622	4/5/2005
8160	3606	4/6/2005
7848	3444	4/7/2005
8114	3535	4/8/2005
8179	3567	4/9/2005
8158	3518	4/10/2005
8187	3527	4/11/2005
8190	3559	4/12/2005
8211	3532	4/13/2005
8188	3486	4/14/2005
8184	3502	4/15/2005

8160	3560	4/16/2005
8182	3516	4/17/2005
8096	3628	4/18/2005
8207	3542	4/19/2005
8194	3573	4/20/2005
8207	3535	4/21/2005
8192	3544	4/22/2005
8176	3511	4/23/2005
8199	3521	4/24/2005
8222	3583	4/25/2005
8247	3529	4/26/2005
8118	3576	4/27/2005
8176	3536	4/28/2005
8218	3538	4/29/2005
8232	3493	4/30/2005
8243	3503	5/1/2005
8214	3498	5/2/2005
8227	3527	5/3/2005
8251	3484	5/4/2005
8218	3504	5/5/2005
8196	3517	5/6/2005
8208	3499	5/7/2005
8199	3486	5/8/2005
8232	3462	5/9/2005
8237	3447	5/10/2005
8253	3454	5/11/2005
8282	3488	5/12/2005
8300	3434	5/13/2005
8281	3418	5/14/2005
8228	3398	5/15/2005
8208	3414	5/16/2005
8253	3353	5/17/2005
8210	3312	5/18/2005
6755	2690	5/19/2005
8292	3306	5/20/2005
8308	3228	5/21/2005
8357	3321	5/22/2005
8385	3295	5/23/2005
8506	3302	5/24/2005
8634	3403	5/25/2005
8660	3447	5/26/2005
8784	3366	5/27/2005
8848	3407	5/28/2005
8865	3443	5/29/2005
8875	3341	5/30/2005
8844	3167	5/31/2005
8849	3254	6/1/2005
8861	3235	6/2/2005

8807	3266	6/3/2005
8791	3412	6/4/2005
8733	3524	6/5/2005
8767	3553	6/6/2005
8740	3515	6/7/2005
8732	3524	6/8/2005
8698	3503	6/9/2005
8681	3488	6/10/2005
8641	3547	6/11/2005
8636	3540	6/12/2005
8632	3549	6/13/2005
8661	3505	6/14/2005
8031	3290	6/15/2005
8606	3653	6/16/2005
8593	3561	6/17/2005
8578	3565	6/18/2005
8581	3589	6/19/2005
8584	3621	6/20/2005
8585	3636	6/21/2005
8526	3629	6/22/2005
8528	3774	6/23/2005
8514	3651	6/24/2005
8551	3583	6/25/2005
8536	3572	6/26/2005
8542	3578	6/27/2005
8528	3647	6/28/2005
8546	3602	6/29/2005
8527	3631	6/30/2005
8593	3611	7/1/2005
8730	3627	7/2/2005
8769	3650	7/3/2005
8927	3657	7/4/2005
8941	3645	7/5/2005
9024	3611	7/6/2005
9055	3720	7/7/2005
9052	3772	7/8/2005
9101	3761	7/9/2005
9110	3963	7/10/2005
8702	3891	7/11/2005
8733	4270	7/12/2005
8796	4195	7/13/2005
8912	4286	7/14/2005
8987	4105	7/15/2005
9041	4107	7/16/2005
8999	4045	7/17/2005
9027	4108	7/18/2005
9023	4143	7/19/2005
9050	4142	7/20/2005

9023	4179	7/21/2005
9046	4213	7/22/2005
9039	4202	7/23/2005
9102	4231	7/24/2005
9088	4226	7/25/2005
9093	4207	7/26/2005
9048	4174	7/27/2005
9034	4180	7/28/2005
9009	4196	7/29/2005
9026	4178	7/30/2005
9020	4173	7/31/2005
9032	4217	8/1/2005
9001	4206	8/2/2005
9025	4260	8/3/2005
9004	4224	8/4/2005
9010	4248	8/5/2005
8994	4260	8/6/2005
8961	4281	8/7/2005
8916	4263	8/8/2005
8898	4251	8/9/2005
8908	4215	8/10/2005
8885	4211	8/11/2005
8896	4183	8/12/2005
8896	4160	8/13/2005
8916	4201	8/14/2005
8919	4213	8/15/2005
8893	4221	8/16/2005
8892	4105	8/17/2005
8894	4255	8/18/2005
8404	3855	8/19/2005
8842	4127	8/20/2005
8817	4198	8/21/2005
8813	4134	8/22/2005
8824	4120	8/23/2005
8856	4061	8/24/2005
8870	4050	8/25/2005
8892	3996	8/26/2005
8874	4017	8/27/2005
8924	4003	8/28/2005
8937	3952	8/29/2005
8892	3917	8/30/2005
8865	3878	8/31/2005
8927	3896	9/1/2005
8860	3780	9/2/2005
8816	3527	9/3/2005
8902	3588	9/4/2005
8838	3555	9/5/2005
8836	3580	9/6/2005
-	-	

8864	3674	9/7/2005
8833	3738	9/8/2005
8783	3637	9/9/2005
8651	3694	9/10/2005
8328	3447	9/11/2005
8696	3568	9/12/2005
8716	3509	9/13/2005
8734	3511	9/14/2005
8743	3493	9/15/2005
8793	3361	9/16/2005
8849	3333	9/17/2005
8860	3384	9/18/2005
8819	3325	9/19/2005
8659	3491	9/20/2005
8629	3415	9/21/2005
8654	3355	9/22/2005
8581	3297	9/23/2005
8688	3127	9/24/2005
8864	3130	9/25/2005
8944	3083	9/26/2005
7567	2535	9/27/2005
8776	3141	9/28/2005
8333	2945	9/29/2005
7937	2759	9/30/2005
8920	3132	10/1/2005
8868	3196	10/2/2005
8964	3095	10/3/2005
9006	3036	10/4/2005
9058	2949	10/5/2005
9129	3057	10/6/2005
9244	3018	10/7/2005
9458	3040	10/8/2005
9338	3019	10/9/2005
9198	3003	########
9240	3018	########
9143	3027	########
8801	2987	########
9041	2933	########
9101	2821	########
9078	2776	########
9145	2845	#######
9112	2838	#######
8749	2730	#######
9188	2829	#######
9252	2890	#######
9271	2900	#######
9313	2897	#######
9355	2919	########

9339	2955	########
9282	2915	########
9236	2928	########
9207	2854	#######
9214	2883	#######
9230	2877	########
9339	2917	#######
9157	2866	11/1/2005
9253	2844	11/2/2005
9239	2831	11/3/2005
9288	2766	11/4/2005
9168	2736	11/5/2005
9410	2647	11/6/2005
9330	2765	11/7/2005
9374	2708	11/8/2005
9378	2668	11/9/2005
9374	2677	#######
9352	2503	#######
9310	2579	#######
9274	2578	#######
9268	2699	########
9309	2646	########
9330	2595	########
9256	2609	#######
9174	2558	########
9115	2562	########
9188	2528	########
9254	2473	#######
9318	2460	#######
9253	2452	#######
9322	2371	########
9354	2363	########
9338	2385	#######
9366	2387	#######
9388	2424	#######
9388	2400	########
9359	2415	########
8920	3132	12/1/2005
8868	3196	12/2/2005
8964	3095	12/3/2005
9006	3036	12/4/2005
9058	2949	12/5/2005
9129		
-	3057	12/6/2005
9244	3018	12/7/2005
9458	3040	12/8/2005
9338	3019	12/9/2005
9198	3003	#######
9240	3018	#######

9143	3027	########
8801	2987	########
9041	2933	########
9101	2821	#######
9078	2776	########
9145	2845	########
9112	2838	########
-	2730	
8749		########
9188	2829	#######
9252	2890	#######
9271	2900	#######
9313	2897	########
9355	2919	########
9339	2955	########
9282	2915	########
9236	2928	########
9207	2854	########
9214	2883	########
9230	2877	#######
9339	2917	#######
9177	3272	1/1/2006
9303	3188	1/2/2006
9288	3226	1/3/2006
9262	3218	1/4/2006
9270	3225	1/5/2006
9235	3223	1/6/2006
9238	3219	1/7/2006
9230	3217	1/8/2006
9219	3244	1/9/2006
9202	3238	1/10/2006
9146	3243	1/11/2006
9119	3252	1/12/2006
9156	3243	1/13/2006
9126	3263	1/14/2006
9129	3225	1/15/2006
9138	3234	1/16/2006
9093	3261	1/17/2006
9054	3260	1/18/2006
9071	3227	1/19/2006
9065	3223	1/20/2006
9049	3192	1/20/2006
9086	3210	1/22/2006
9118	3248	1/23/2006
9121	3258	1/24/2006
9101	3266	1/25/2006
9138	3240	1/26/2006
9063	3150	1/27/2006
9093	3216	1/28/2006

8976	3327	1/29/2006
9061	3312	1/30/2006
9098	3267	1/31/2006
8949	3261	2/1/2006
9000	3218	2/2/2006
8999	3255	2/3/2006
9031	3307	2/4/2006
9021	3331	2/5/2006
9060	3341	2/6/2006
9070	3359	2/7/2006
9097	3378	2/8/2006
9080	3411	2/9/2006
9081	3433	2/10/2006
9045	3437	2/11/2006
9074	3440	2/12/2006
8916	3391	2/13/2006
9103	3446	2/14/2006
9091	3447	2/15/2006
9144	3429	2/16/2006
9160	3481	2/17/2006
9252	3404	2/18/2006
9340	3410	2/19/2006
9423	3400	2/20/2006
9363	3405	2/21/2006
9330	3439	2/22/2006
9360	3388	2/23/2006
9255	3395	2/24/2006
9381	3359	2/25/2006
9370	3354	2/26/2006
9378	3358	2/27/2006
9430	3264	2/28/2006
9388	3301	3/1/2006
9388	3320	3/2/2006
9153	3245	3/3/2006
9274	3247	3/4/2006
9359	3280	3/5/2006
9320	3248	3/6/2006
9328	3252	3/7/2006
9346	3208	3/8/2006
9335	3184	3/9/2006
9330	3139	3/10/2006
9301	3088	3/10/2006
9476	3076	3/11/2006
9450	3006	3/12/2006
9461	3037	3/13/2006
9416	3037	3/14/2006
9416	3003	3/15/2006
9493	2994	3/17/2006
3 -13 0	200 4	3/11/2000

9612	2996	3/18/2006
9623	2907	3/19/2006
9657	2918	3/20/2006
9696	2864	3/21/2006
9741	2875	3/22/2006
9713	2827	3/23/2006
9674	2811	3/24/2006
9689	2853	3/25/2006
9666	2853	3/26/2006
9654	2858	3/27/2006
9700	2893	3/28/2006
9676	2885	3/29/2006
9544	2825	3/30/2006
9548	2813	3/31/2006
9563	2807	4/1/2006
9588	2780	4/2/2006
9607	2746	4/3/2006
9711	2714	4/4/2006
9776	2750	4/5/2006
9835	2749	4/6/2006
9884	2755	4/7/2006
9916	2737	4/8/2006
9952	2761	4/9/2006
9996	2729	4/10/2006
10019	2714	4/11/2006
10011	2698	4/12/2006
10037	2688	4/13/2006
10101 10087	2681 2640	4/14/2006 4/15/2006
10087	26 4 0 2625	4/16/2006
9993	2593	4/17/2006
9982	2595 2595	4/17/2006
9965	2595 2575	4/19/2006
9969	2540	4/20/2006
10021	2503	4/21/2006
10021	2498	4/22/2006
10182	2350	4/23/2006
10230	2294	4/24/2006
10231	2303	4/25/2006
10241	2334	4/26/2006
10221	2359	4/27/2006
10266	2296	4/28/2006
10283	2282	4/29/2006
10301	2275	4/30/2006
10285	2292	5/1/2006
10276	2299	5/2/2006
10188	2212	5/3/2006
10132	2129	5/4/2006

9950	2110	5/5/2006
10049	2125	5/6/2006
10209	2084	5/7/2006
10214	2070	5/8/2006
10334	1973	5/9/2006
10443	1969	5/10/2006
10463	1948	5/11/2006
10539	1927	5/12/2006
10464	1950	5/13/2006
10512	2002	5/14/2006
10491	1971	5/15/2006
10492	1921	5/16/2006
10381	1901	5/17/2006
10317	1961	5/18/2006
10360	1916	5/19/2006
10405	1895	5/20/2006
10467	1850	5/21/2006
10402	1871	5/22/2006
10340	1868	5/23/2006
10343	1821	5/24/2006
10347	1780	5/25/2006
10321	1759	5/26/2006
10306	1757	5/27/2006
10311	1785	5/28/2006
10245	1800	5/29/2006
10206	1773	5/30/2006
10020	1643	5/31/2006
9900	1638	6/1/2006
9905	1611	6/2/2006
9887	1544	6/3/2006
9880	1561	6/4/2006
9845	1570	6/5/2006
9797	1562	6/6/2006
19474	3104	6/7/2006
19390	3124	6/8/2006
19328	3074	6/9/2006
19340	3052	6/10/2006
19374	2966	6/11/2006
18818	2834	6/12/2006
18260	2852	6/13/2006
17712	2688	6/14/2006
17824	2746	6/15/2006
17886	2756	6/16/2006
17836	2760	6/17/2006
17878	2722	6/18/2006
17646	2694	6/19/2006
17350	2664	6/20/2006
17150	2634	6/21/2006

16958	2586	6/22/2006
16762	2564	6/23/2006
16646	2516	6/24/2006
16536	2490	6/25/2006
16474	2470	6/26/2006
16418	2422	6/27/2006
16322	2418	6/28/2006
16158	2386	6/29/2006
16138	2366	6/30/2006
16270	2270	7/1/2006
16324	2200	7/2/2006
16716	2322	7/3/2006
16958	2270	7/4/2006
17224	2244	7/5/2006
17380	2314	7/6/2006
17204	2290	7/7/2006
16882	2216	7/8/2006
16750	2230	7/9/2006
16598	2210	7/10/2006
16564	2170	7/11/2006
16564	2156	7/12/2006
16142	2104	7/13/2006
16060	2092	7/14/2006
16040	2068	7/15/2006
15988	2094	7/16/2006
16008	2176	7/17/2006
16176	2056	7/18/2006
16318	2050	7/19/2006
16294	2070	7/19/2006
16348	2060	7/21/2006
16124	2034	7/22/2006
16418	1996	7/23/2006
16602	2086	7/24/2006
16524	2048	7/25/2006
16506	2038	7/26/2006
16612	2050	7/27/2006
16674	2076	7/28/2006
16706	1998	7/29/2006
16680	2020	7/30/2006
16566	1992	7/31/2006
16492	1986	8/1/2006
16472	1964	8/2/2006
16566	1974	8/3/2006
16660	1952	8/4/2006
16662	1978	8/5/2006
16546	1910	8/6/2006
16472	1804	8/7/2006
16242	1738	8/8/2006

40000	4704	0/0/0000
16392	1764	8/9/2006
16320	1670	8/10/2006
16350	1660	8/11/2006
16342	1696	8/12/2006
16300	1672	8/13/2006
16692	1614	8/14/2006
16562	1768	8/15/2006
16660	1746	8/16/2006
16876	1786	8/17/2006
16646	1810	8/18/2006
16448	1754	8/19/2006
16392	1680	8/20/2006
16212	1670	8/21/2006
16156	1668	8/22/2006
16126	1738	8/23/2006
16116	1702	8/24/2006
16120	1688	8/25/2006
16020	1664	8/26/2006
15904	1638	8/27/2006
16044	1650	8/28/2006
16034	1708	8/29/2006
16032	1690	8/30/2006
15952	1650	8/31/2006
15922	1670	9/1/2006
16002	1624	9/2/2006
16036	1646	9/3/2006
16312	1636	9/4/2006
16154	1686	9/5/2006
16090	1638	9/6/2006
16032	1650	9/7/2006
14508	1442	9/8/2006
14144	1440	9/9/2006
14720	1538	9/10/2006
14594	1526	9/11/2006
14238	1472	9/12/2006
14608	1498	9/13/2006
15204	1482	9/14/2006
15504	1600	9/15/2006
15680	1488	9/16/2006
15934	1600	9/17/2006
16120	1568	9/18/2006
15136	1482	9/19/2006
15154	1500	9/20/2006
15086	1508	9/21/2006
15198	1494	9/22/2006
15338	1508	9/23/2006
15372	1428	9/24/2006
15728	1370	9/25/2006

7036	602	9/26/2006
0	0	9/27/2006
0	0	9/28/2006
0	0	9/29/2006
0	0	9/30/2006
0	0	10/1/2006
0	0	10/2/2006
6864	594	10/3/2006
18468	1814	10/4/2006
19912	1870	10/5/2006
21086	1934	10/6/2006
22242	2270	10/7/2006
23556	2260	10/8/2006
23984	2370	10/9/2006
23806	2328	########
23692	2352	########
23518	2366	########
23500	2372	########
23506	2302	########
23996	2344	########
25036	2422	########
25832	2422	########
25798	2454	########
25930	2506	########
26064	2514	########
26256	2510	########
26112	2580	########
26044	2494	########
25956	2572	########
25966	2542	########
25860	2508	########
25820	2478	########
25942	2552	########
26118	2440	########
26154	2544	########
26248	2542	########
26274	2560	11/1/2006
26196	2606	11/2/2006
26506	2496	11/3/2006
26424	2504	11/4/2006
26612	2486	11/5/2006
26596	2514	11/6/2006
26448	2552	11/7/2006
26044	2696	11/8/2006
25788	2662	11/9/2006
25624	2476	#######
25498	2286	#######
25442	2418	#######

25398	2368	########
25334	2310	########
25304	2358	########
25294	2266	########
25224	2272	########
25328	2258	########
25216	2316	########
25202	2292	########
25264	2302	#######
25196	2282	#######
25234	2286	#######
25194	2242	########
25212	2236	########
25242	2224	########
25238	2196	########
25290	2218	########
25270	2210	########
25270 25266		########
	2146	
25304	2192	12/1/2006
25222	2160	12/2/2006
25430	2108	12/3/2006
25378	2134	12/4/2006
25376	2100	12/5/2006
25366	2106	12/6/2006
25360	2198	12/7/2006
25376	2234	12/8/2006
25394	2314	12/9/2006
25388	2134	########
25346	2176	########
25536	2184	########
25778	2220	########
25838	2210	########
25874	2258	########
25924	2254	########
25980	2292	#######
26010	2266	########
26094	2240	########
26128	2252	########
26132	2276	########
26056	2318	########
26110	2226	########
26142	2210	########
-	2196	########
26188		
26162	2204	#######
26156	2200	########
26242	2234	#######
26362	2166	#######
26278	2238	#######

25368	2046	########
0	0	1/1/2007
26472	2144	1/2/2007
26490	2200	1/3/2007
0	0	1/4/2007
26578	2220	1/5/2007
26594	2220	1/6/2007
0	0	1/7/2007
0	0	1/8/2007
26574	2216	1/9/2007
26460	2232	1/19/2007
0	0	1/20/2007
0	0	1/21/2007
0	0	1/22/2007
26696	2104	1/23/2007
26648	2206	1/24/2007
26676	2160	1/25/2007
26736	2122	1/26/2007
26750	2192	1/27/2007
26756	2150	1/28/2007
26782	2140	1/29/2007
26364	2132	1/30/2007
26618	2172	2/2/2007
26908	2184	2/3/2007
26872	2142	2/4/2007
26904	2134	2/5/2007
26826	2124	2/6/2007
27058	2076	2/8/2007
26966	2074	2/10/2007
26894	2106	2/11/2007
27008	2096	2/12/2007
26758	2178	2/13/2007
27004	2054	2/14/2007
27052	2068	2/15/2007
27176	2212	2/16/2007
27076	2156	2/17/2007
26982	2092	2/18/2007
26926	2108	2/19/2007
26934	2126	2/20/2007
26816	1938	2/21/2007
26962	1754	2/22/2007
26838	1904	2/23/2007
27058	1946	2/24/2007
27026	1962	2/25/2007
26906	1978	2/26/2007
27012	1996	2/27/2007
26952	1948	2/28/2007
27056	1870	3/1/2007

26944	1900	3/2/2007
27054	1814	3/3/2007
27054	1886	3/4/2007
27054	1862	3/5/2007
27090	1748	3/6/2007
27016	1976	3/7/2007
27016	1968	3/8/2007
27046	1954	3/9/2007
27016	1962	3/10/2007
27346	1934	3/12/2007
27184	1904	3/13/2007
27080	1920	3/14/2007
27238	1826	3/15/2007
27320	1868	3/16/2007
27372	1816	3/17/2007
27396	1822	3/18/2007
27388	1846	3/19/2007
27468	1814	3/20/2007
27472	1850	3/22/2007
27676	1892	3/23/2007
27654	1798	3/24/2007
27694	1774	3/25/2007
27798	1752	3/26/2007
27700	1746	3/27/2007
27678	1750	3/28/2007
27644	1768	3/29/2007
27724	1712	3/30/2007
27706	1716	3/31/2007
27710	1750	4/1/2007
27668	1746	4/2/2007
27614	1766	4/3/2007
0	0	5/1/2007
0	0	5/2/2007
0	0	5/3/2007
0	0	5/4/2007
0	0	5/5/2007
0	0	5/6/2007
0	0	5/7/2007
0	0	5/8/2007
0	0	5/9/2007
0	0	5/10/2007
0	0	5/11/2007
0	0	5/12/2007
27748	1914	5/13/2007
27662	1910	5/14/2007
27592	1898	5/15/2007
27542	1858	5/16/2007
27632	1798	5/17/2007
	-	

27694	1848	5/18/2007
27734	1828	5/19/2007
27726	1810	5/20/2007
27658	1852	5/21/2007
27680	1782	5/22/2007
0	0	5/23/2007
27608	1876	5/24/2007
27430	1916	5/25/2007
27448	1846	5/26/2007
27582	1854	5/27/2007
27728	1786	5/28/2007
27862	1764	5/29/2007
27912	1868	5/30/2007
27864	1938	5/31/2007
27956	1848	6/1/2007
27936	1838	6/2/2007
27888	1862	6/3/2007
27924	1836	6/4/2007
0	0	6/5/2007
0	0	6/6/2007
0	0	6/7/2007
27782	1864	6/8/2007
27774	1852	6/9/2007
27784	1900	6/10/2007
27804	1828	6/11/2007
27836	1818	6/12/2007
27784	1814	6/13/2007
27582	1744	6/14/2007
27544	1746	6/15/2007
27666	1744	6/16/2007
27760	1752	6/17/2007
27832	1716	6/18/2007
27902	1710	6/19/2007
0	0	6/20/2007
0	0	6/21/2007
27848	1620	6/22/2007
27890	1520	6/23/2007
0	0	6/24/2007
_	· ·	
27744	1640	6/25/2007
27772	1568	6/26/2007
0	0	6/27/2007
0	0	6/28/2007
27790	1482	6/29/2007
27752	1640	6/30/2007
27714	1716	7/1/2007
27718	1634	7/2/2007
27696	1574	7/3/2007
27688	1584	7/4/2007
555	.00.	., ., 2001

27724	1570	7/5/2007
27688	1572	7/6/2007
13848	781	7/7/2007
27574	1568	7/8/2007
27598	1572	7/9/2007
27588	1572	7/10/2007
27636	1638	7/11/2007
27542	1604	7/12/2007
27638	1544	7/13/2007
27578	1560	7/14/2007
27648	1526	7/15/2007
27722	1502	7/16/2007
27736	1526	7/17/2007
27696	1540	7/18/2007
27712	1540	7/19/2007
27746	1508	7/20/2007
27712	1482	7/21/2007
27736	1526	7/22/2007
27794	1528	7/23/2007
27670	1540	7/24/2007
27796	1468	7/25/2007
27848	1424	7/26/2007
27810	1464	7/27/2007
27918	1428	7/28/2007
27900	1328	7/29/2007
27962	1364	7/30/2007
27890	1406	7/30/2007
27934		8/1/2007
	1410	
27814	1420	8/2/2007
27878	1454	8/3/2007
27840	1412	8/4/2007
27866	1436	8/5/2007
23900	1104	8/6/2007
28068	1294	8/7/2007
28006	1314	8/8/2007
27994	1328	8/9/2007
28036	1318	8/10/2007
28070	1308	8/11/2007
28038	1322	8/12/2007
28012	1310	8/13/2007
28056	1314	8/14/2007
28064	1292	8/15/2007
27814	1384	8/16/2007
27878	1342	8/17/2007
27774	1340	8/18/2007
27926	1450	8/19/2007
27944	1308	8/20/2007
27920	1318	8/21/2007
21320	1010	0,21,2007

27924	1354	8/22/2007
27882	1354	8/23/2007
27930	1354	8/24/2007
27998	1336	8/25/2007
	1356	
27976		8/26/2007
28064	1234	8/27/2007
27974	1370	8/28/2007
27976	1412	8/29/2007
28010	1310	8/30/2007
28122	1302	9/3/2007
27962	1318	9/4/2007
28022	1292	9/5/2007
26644	1270	9/6/2007
28166	1248	9/7/2007
28162	1252	9/8/2007
28136	1292	9/9/2007
28122	1310	9/10/2007
28106	1308	9/10/2007
28108	1312	9/12/2007
28082	1282	9/13/2007
28106	1278	9/14/2007
28138	1286	9/15/2007
28182	1264	9/16/2007
28372	1232	9/17/2007
28214	1218	9/18/2007
28166	1234	9/19/2007
28318	1226	9/20/2007
28164	1232	9/21/2007
28308	1218	9/22/2007
28206	1164	9/23/2007
28304	1150	9/24/2007
28198	1210	9/25/2007
28152	1210	9/25/2007
28312	1186	9/27/2007
28304	1198	9/28/2007
28274	1139	9/29/2007
28410	1108	9/30/2007
14107	593	10/1/2007
14158	595	10/2/2007
14142	581	10/3/2007
14153	568	10/4/2007
14151	571	10/5/2007
14151	571	10/6/2007
14108	571	10/7/2007
14122	568	10/8/2007
14125	578	10/9/2007
14108	581	#######
14087	585	########
17001	505	######################################

14097	581	########
14095	576	########
14150	588	########
14162	574	#######
14117	551	#######
14088	573	#######
14129	580	#######
14181	557	########
14143	561	########
14002	613	########
14021	572	########
14048	551	########
13971	525	########
14019	566	########
14119	557	########
14119	588	11/2/2007
14587	588	11/3/2007
		11/3/2007
14674	504	
14700	461	11/5/2007
14673	539	11/6/2007
14589	540	11/7/2007
14558	552	11/8/2007
29148	1118	11/9/2007
14469	565	########
14425	634	########
14442	616	########
14353	694	########
14333	686	########
14315	672	########
14356	671	########
14314	669	########
14334	671	########
14262	665	########
14339	649	#######
14259	661	#######
14388	629	########
14341	623	########
14388	600	########
14359	593	########
14367	582	########
14364	611	########
14354	580	########
14364	572	
	_	#######
14364	526	12/1/2007
14254	527	12/2/2007
14258	489	12/3/2007
14227	492	12/4/2007
13495	483	12/5/2007

14047	508	12/6/2007
14166	511	12/7/2007
	_	
13994	487	12/8/2007
14016	529	12/9/2007
13951	545	########
13958	559	#######
13972	581	########
14029	563	#######
14006	554	########
14003	544	########
13986	556	#######
13902	556	#######
13959	563	########
14004	538	########
13997	550	########
14004	562	########
14010	563	########
14038	532	#######
14005	560	########
14000	568	########
13981	581	#######
13969	564	########
13862	644	########
13999	546	########
14008	622	1/1/2008
14115	586	1/2/2008
14104	586	1/3/2008
14065	593	1/4/2008
		., .,
14053	601	1/5/2008
14061	577	1/6/2008
14055	573	1/7/2008
14042	578	1/8/2008
14083	574	1/9/2008
14044	589	1/10/2008
14109	566	1/11/2008
14136		1/12/2008
	588	.,,
14230	571	1/13/2008
14298	577	1/14/2008
14311	578	1/15/2008
14352	596	1/16/2008
14363	592	1/17/2008
14394	576	1/18/2008
14435		
	566 546	1/19/2008
14433	546	1/20/2008
14431	561	1/21/2008
14451	584	1/22/2008
14570	555	1/23/2008
14564	567	1/24/2008
	•	

14574	550	1/25/2008
14581	562	1/26/2008
14558	554	1/27/2008
14592	561	1/28/2008
14591	565	1/29/2008
14592	544	1/30/2008
14604	563	1/31/2008
14619	547	2/1/2008
14617	570	2/2/2008
14603	579	2/3/2008
14532	568	2/4/2008
29046	1096	2/5/2008
29076	1090	2/6/2008
14646	518	2/8/2008
14521	565	2/9/2008
14597	527	2/10/2008
14489	588	2/11/2008
14444	617	2/12/2008
14504	623	2/14/2008
14555	575	2/15/2008
14634	532	2/16/2008
14576	572	2/17/2008
14404	691	2/18/2008
14628	553	2/19/2008
14532	581	2/20/2008
14488	580	2/21/2008
14594	596	2/23/2008
14786	504	2/24/2008
14519	634	2/25/2008
14593	622	2/26/2008
14684	537	2/27/2008
14770	531	2/28/2008
14664	600	2/29/2008
14693	578	3/1/2008
14762	524	3/2/2008
	/	#######