

الجامعة الإماراتية الدولية كلية كلية الهندسة قسم الهندسة المدنية

مشروع تخرج لنيل درجة البكالوريوس في الهندسة المدنية

(برج مقاوم للزلازل)

تحت اشراف الدكاترة الفاضلين :

د/ سليمان الصافي د/ أبراهيم العامري

عمل الطلاب :

- جهاد حسين العماري ، أنور حفظ الله البحم
- رسام فواز الصماط ، أحمد صقر الحجاجي

الإهداء

الحمد لله وكفى والسلام على الحبيب المصطفى الحمد لله الذي وفقنا لتثمين هذه الخطوة في مسيرتنا الدراسية

نهدي بحث تخرجنا

الى من كانوا ظلاً نستظل به طوال مسيرتنا الجامعية والدراسية التي مضت لنصل الى ما نحن عليه الان الى من أعطوا من طاقتهم وجهودهم أكثر مما بذلنا نحن

الى الوالدين الكريمين (ابائنا وامهاتنا)

الى من اود ان اشاركهم نجاحي ليكونوا الجزء الأكبر من هذه الفرحة الى كل الفخر والشموخ (أخوتنا وخواتنا)

الى كل الاهل والأصدقاء

ربما لا تتاح دائماً الفرصة لنا لنقول شكراً...

وربما لا نملك جراءة التعبير عن الامتنان والعرفان ولكن يكفي ان تعرفو انكم الجوهرة الثمينة لكلية الهندسة والشمعة المضيئة والبحر الذي نستمد منه علمنا ومعلوماتنا ادامكم الله فخراً لكلية الهندسة

> الدكتور/ سليمان الصافي الدكتور/ أبراهيم العامري

محنويات الكناب

الباب الأول / مقدمة عن المشروع

الباب الثاني / الاحمال

الباب الثالث / الحسابات الزلزالية

الباب الرابع / البلاطات

الباب الخامس / الجسور

الباب السادس / الاعمدة

الباب السابع / جدران القص

الباب الثامن / السلالم

الباب التاسع / الاساسات (اللبشة)

الباب الاول

مقدمة عن المشروع

INTRODUCTION
TO PROJECT

التعریف بالمشروع :-

- اسم المشروع: برج الوفاء التجاري
- المشروع: عبارة عن مبنى مكون من ١٠ ادوار ودور تحت الأرض (بدروم).
 - ملحقات للمبنى:

البدروم عبارة عن موقف سيارات

الدور الاول عبارة عن استقبال

من الدور الثاني وحتى العاشر عبارة عن مكاتب

- مبنى المشروع: مبنى متعدد الطوابق مقاوم للزلازل.
 - موقع المشروع: صنعاء الخمسين.
- مساحة المشروع (البدروم والحوش): ١٣٨٢ متر مربع.
 - مساحة المشروع (المتكرر): ٧٦٥ متر مربع.
 - النظام الانشائي المستخدم: Dual System

البرامج الهندسية المستخدمة في المشروع:-

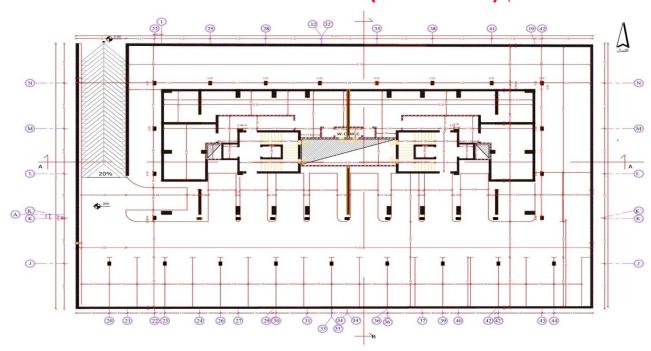
- ۱- برنامج الرسم Rivet
- 4- برنامج الرسم AutoCAD
 - ٣- برنامج الجداول Excel
- ٤- برنامج التحليل الانشائي Robot

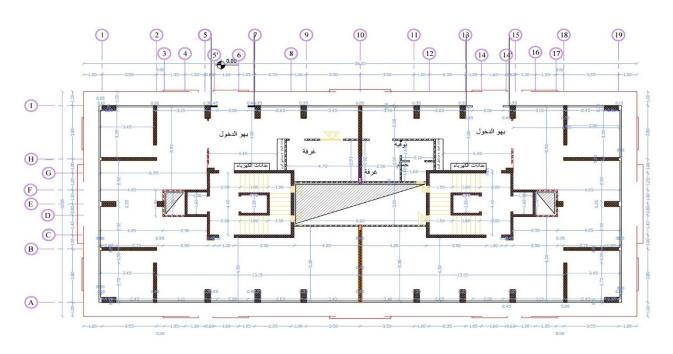
المواصفات المستخدمة :-

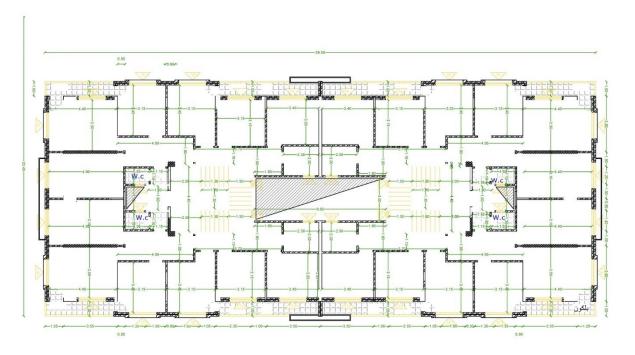
- ١- مدونة معهد الخرسانة الأمريكي (ACI Code 19)
 - ٢- كود الاحمال والتصميم الزلزالي (ASCE 7-16)

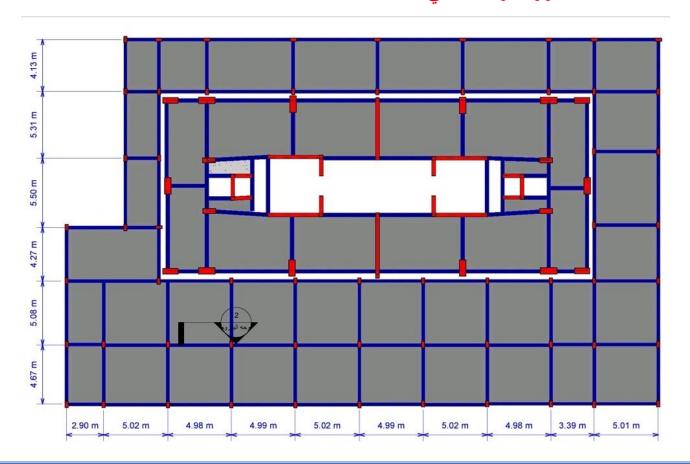
مقاومة الخرسانة وحديد التسليح للأعضاء الانشائية كالتالي:

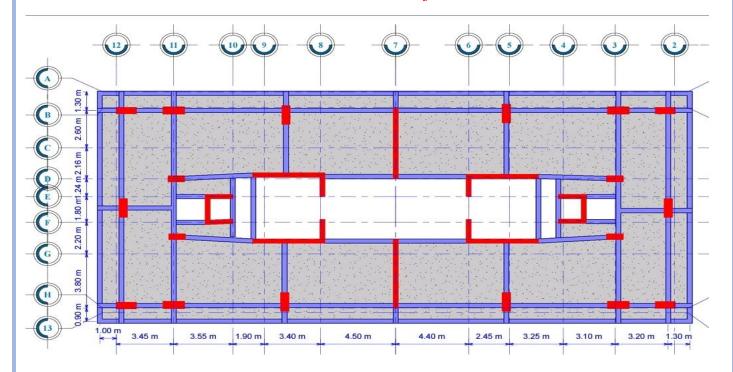
إجهاد الخضوع لحديد التسليح Fy (MPa)	مقاومة الخرسانة القصوى Fc' (MPa)	العنصر الإنشائي
<u> </u>	<u> </u>	البلاطات
<u> </u>	<u> </u>	الجسور
٤٧.	<u> </u>	الأعمدة
<u> </u>	٤٠	جدران القص
٤٢٠	٤.	الأساسات
۲۸.	٣٠	السلالم
Y	70	جميع عناصر البدروم الخارجية

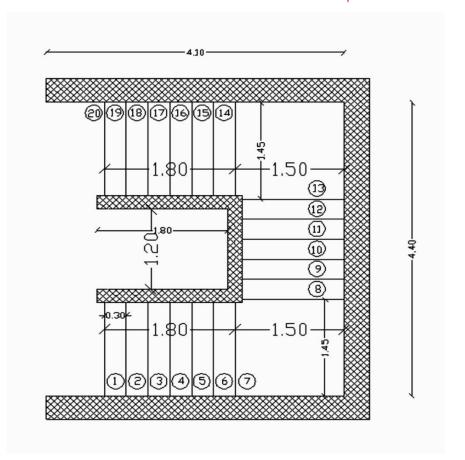

❖ واجهات المشروع (3D) معماري:-


❖ واجهات المشروع (3D) انشائي:-


♦ مسقط البدروم (مواقف سيارات) :-


♦ مسقط الدور الاول (استقبال) معماري :-

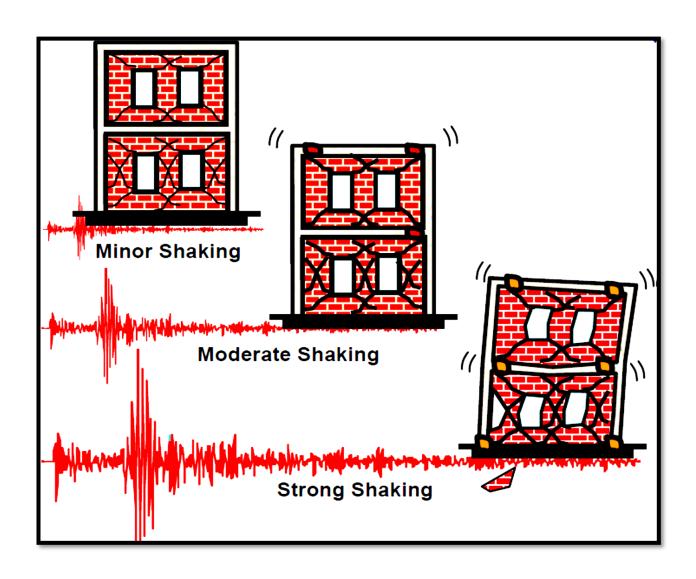

❖ مسقط الدور المتكرر (مكاتب) معماري :-


♦ مسقط الدور الاول أنشائي :-

↔ مسقط الدور المتكرر أنشائي :-

♦ بلان السلالم:-

البابع الثاني


LOADS

فلسفة التصميم الزلزالي:

- 1) تحت تأثير الزلازل الخفيفة والمتكررة، فان جميع العناصر الانشائية التي تحمل القوى الراسية والافقية يجب ان لا تتعرض إلى دمار (تظل في حد المرونة)، مع ذلك فان العناصر غير الإنشائية يمكن ان تتعرض الى اضرار او خراب قابل للترميم.
- ٢) تحت تأثير الزلازل المتوسطة والمتكررة الحدوث احياناً، فإن جميع العناصر الانشائية التي تحمل القوى الراسية والافقية قد تتعرض الى اضرار قابلة للترميم. بينما العناصر غير الانشائية يمكن ان تتعرض الى اضرار او خراب يستوجب استبدالها وإعادة بنائها بعد حدوث الزلزال.
 - ٣) تحتُ تَاثير الزّلازلُ القوية والنادرة الحدوث، فإن جميع العناصر الانشائية والرئيسية قد تتعرض إلى اضرار يتعذر إصلاحها، ولكن يجب ان لا ينهار المنشأ.

: Earthquake Load حساب احمال الزلازل على المنشآت

هناك طرق لتقدير أحمال الزلازل على المنشآت طبقا لمعايير محددة لكل طريقة ،
 سنذكر مقدمة عن هذ الطرق، وهي كالتالي :

طريقة الحمل الاستاتيكي المكافئ:

- تستخدم الاحمال التصميمية للزلازل والمعطاة فيما يلي قوى القص العرضية وقوى العزوم على المنشآت التي لا يزيد ارتفاعها عل 100 متر ولا تزيد نسبة الارتفاع الى البعد الافقي في اتجاه قوة الزلازل لها عن 5 وبشرط ان يكون النظام الانشائي المقاوم لتلك الاحمال منتظما في المسقط الافقي وبكامل ارتفاع المبنى .

طريقة طيف الاستجابة:

- تستخدم هذه الطريقة لحساب قوى الزلازل التصميمية وطريقة توزيعها وذلك للمنشآت ذات الشكل والنظام الانشائي المنتظمين والتي يتراوح ارتفاعها بين 100-150 متر او تزيد نسبة الارتفاع الى البعد الافقى في اتجاه قوة الزلزال لها عن 5.
- ويؤخذ تأثير الزلازل على المنشآت التي يسري عليها هذا البند لقوى استاتيكية عرضية تؤثر على منسوب بلاطة كل دور من أدوار المنشاء شاملة بلاطة السطح وتحدد قيمتها باستخدام الخواص الديناميكية للمنشاء.

طريقة التجاوب الديناميكي:

تستخدم هذه الطريقة لحساب القوى الداخلية التي تنتج في العناصر الانشائية للمنشآت من تأثير الزلازل ويجب استخدامها في الحالات التالية:

- منشئات ذات ارتفاع اكبر من 150 متر.
- منشآت ذات نظام انشائي مقاوم للزلازل غير منتظم وفيها لا تمتد العناصر الانشائية باستمرارية في الاساسات او يحدث تغييرا كبيرا فجائيا في جساءة هذه العناصر من الدور الذي يليه.
 - منشئات غير منتظمة الشكل وغير متماثلة
 - منشئات ذات أدوار متعددة بحيث يكون التغيير في مساحة الدور الذي يليه اكبر من 25%
 - منشئات ذات لا مركزية تصميمة تزيد على 25% اكبر من بعد المنشاء في المسقط الأفقي عموديا على اتجاه القوى العرضية
 - منشئات ذات خواص انشائية غير عادية أخرى
 - ويتم في هذه الطريقة حساب القوى الداخلية في العناصر المختلفة للمنشاء بتحديد التجاوب الديناميكي له مع الحركة الأرضية الناتجة عن الزلازل وذلك عن طريق تكامل معادلات حركة المنشاء بالنسبة للزمن. ويجب ان يشمل التحليل الديناميكي الخواص الديناميكية لكل من المنشآت شاملا اساساته والترب الحاملة له.

فيم الاحمال المستخدمة في المشروع:

الاحمال الحياة:

يتم اخذ قيم الاحمال الحيه وذلك من جداول خاصة حددها الكود. وقد اخذنا القيم بما يتناسب مع مشروعنا والغرض الانشائي منه وهي كما يلي:

قيمة الحمل (kN/m2)	نوع الاستخدام
4.79	السلالم
2.4	البدروم (مواقف سيارات)
2.4	الاستقبال
2.4	المكاتب

الاحمال الميتة:

A. احمال الجدران الخارجية:

- ارتفاع الدور (3.2 m).
- سوف يتم استخدام قواطع من البلك بسماكة (20 cm) . بكثافة (14 kN/m3) .
- سوف يتم تغطيت بمؤنة اسمنتية كثافتها ($20 \, kN/m3$) وطبقة من الطلاء سماكة $(2 \, cm)$.
 - سُوف نهمل الفتحات.

Wu = ((0.2*3.2*14) + ((0.02*3.2*20)*2)) = 11.5 kN/m'

B. احمال الجدران الداخلية:

- ارتفاع الدور (3.2 m). ارتفاع الدور الصافي (2.9 m).
- سوف يتم استخدام قواطع من البلك بسماكة (15 cm) . بكثافة (14 kN/m3) .
- سوف يتم تغطيت بمؤنة اسمنتية كثافتها (20 kN/m3) وطبقة من الطلاء سماكة
 - .(2 cm) •
 - سوف نهمل الفتحات.

Wu = ((0.15*2.9*14) + ((0.02*2.9*20)*2)) = 8.4 kN/m'

الجدران الداخلية المسنودة مباشرة على البلاطة هي بلك بسماكة (10 cm)، وقد تم اخذ وزن اكبر بلاطة و وزن الجدران الكلي على البلاطة وتم قسمة وزن الجدران الكلي على مساحة البلاطة فكان الناتج:

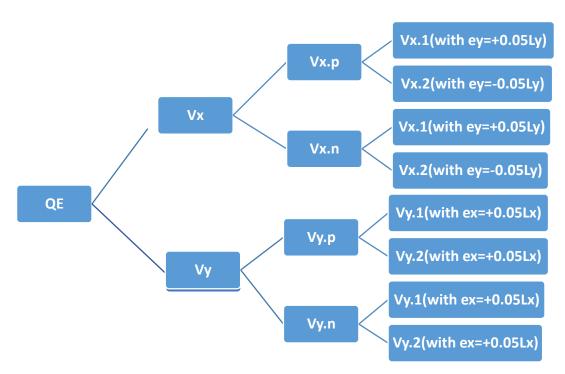
w.L =
$$\frac{W}{A} = \frac{61.3}{34.7} = 1.7 \text{ kN / m}^2$$

. (Finishing Load) د احمال التغطية.

الوزن	t (mm)	kn/m3	المادة		
0.625	2.5cm	25	بلاط الارضيات		
o.55	2.5cm	22	مونة اسمنتية		
0.595	3.5cm	17	رم <i>ل</i>		
0.33	1.5 cm	22	تلاييس اسمنتية		
	F.L=2.1 Kn/m2				

Wu = (0.025*25) + (0.025*22 + (0.035*17) + (0.015*22)= 2.1 kN/m2

💠 مركبات التحميل والقوى (Load Combination) :-


○ المعادلة الرئيسية لتراكيب الاحمال الزلزالية:-

$1.2 D.L + F_1 * L.L + E$

○ المعادلة الثانوية لتراكيب الاحمال الزلزالية :-

0.9 D.L
$$\pm E$$

(0.9 - 0.2 * 0.66) D.L + ρ QE
=> 0.768 D.L + 1.3 QE

• سيكون هناك Λ قيم لQE ولذلك سيكون هناك Λ قيم لكل تركيبة زلزالية اللامركزية هذه عبارة عن اللامركزية الطارئة والتي تؤخذ بـ 5% من ابعاد المبنى حيث تكون عمودية على طول الاتجاه المدروس

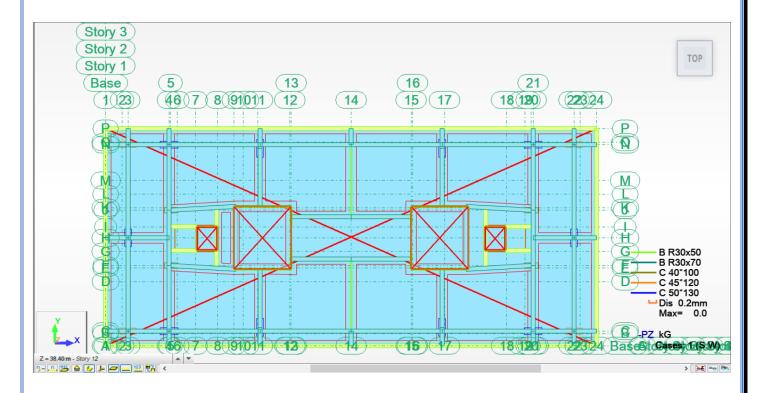
• وعلية فإن التراكيب الزلزالية الناتجة عن التركيبة الاساسية هي: -

- 1) $Vx_{1.p} = 1.332 D.L + 0.5L + 1.3 V_{x1}$
- 2) $Vx_{1,n} = 1.332 D.L + 0.5L 1.3V_{x1}$
- 3) $Vx_{2,p} = 1.332 D.L + 0.5L + 1.3 V_{x2}$
- 4) $Vx_{2,n} = 1.332 D.L + 0.5L 1.3 V_{x2}$
- 5) $Vy_{1,p} = 1.332 \text{ D. L} + 0.5 \text{L} + 1.3 V_{y1}$
- 6) $Vy_{1.n} = 1.332 D. L + 0.5L 1.3 V_{v1}$
- 7) $Vy_{2,p} = 1.332 D. L + 0.5L + 1.3 V_{v2}$
- 8) $Vy_{2.n} = 1.332 D. L + 0.5L 1.3 V_{y2}$

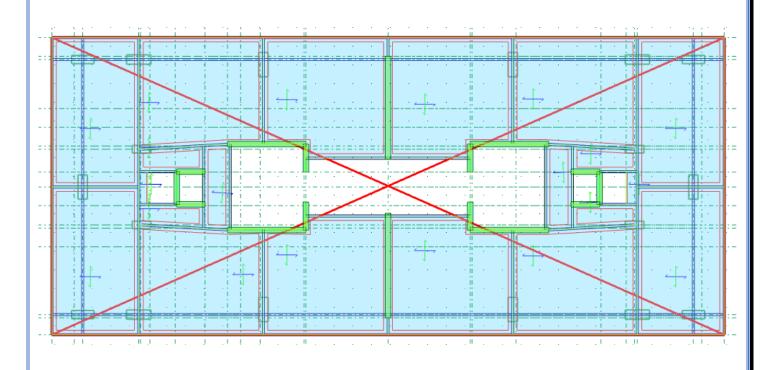
• وعلية فإن التراكيب الزلزالية الناتجة عن التركيبة الثانوية هي: -

- 1) $V_{xx1,p} = 0.768 D.L + 1.3 V_{x1}$
- 2) $V_{xx1.n} = 0.768 D.L 1.3 V_{x1}$
- 3) $V_{xx2.p} = 0.768 D.L + 1.3 V_{x2}$
- 4) $V_{xx2.n} = 0.768 D.L 1.3 V_{x1}$
- 5) $V_{yy1.p} = 0.768 D.L + 1.3 V_{y1}$
- 6) $V_{yy1.n} = 0.768 D.L 1.3 V_{y1}$
- 7) $V_{yy2.p} = 0.768 D.L + 1.3 V_{v2}$
- 8) $V_{yy2.n} = 0.768 D.L 1.3 V_{y2}$

الباب الثالت


الحسابات الزلزالية

SEISMIC


CALCULATION

❖ الفرق بين مركز الكتلة ومركز الجسأة للدور الأخير من الروبوت:

❖ الفرق بين مركز الكتلة ومركز الجسأة للدور المتكرر من الروبوت:

❖ الفرق بين مركز الكتلة ومركز الجسأة للادوار كامل من الروبوت:

و المحور ٢	على المحور X	مركز الجسائة	ركز الكتلة و	الفرق بين مر
Name	Lx (m)	Ly (m)	ex0 (m)	ey0 (m)
Story 1	36	15.9	0	0.05
Story 2	36	15.9	0	0.03
Story 3	36	15.9	0	0.03
Story 4	36	15.9	0	0.03
Story 5	36	15.9	0	0.03
Story 6	36	15.9	0	0.03
Story 7	36	15.9	0	0.03
Story 8	36	15.9	0	0.03
Story 9	36	15.9	0	0.03
Story 10	36	15.9	0	0.03
Story 11	36	15.9	0	0.03
Story 12	22.64	4.6	0.02	0.01
AVER	34.8867	14.9583	0.0017	0.03
			0.0048	0.20
	•			

القيم حقنا قريبة من الصفر مما يعني ان مشروعنا اقتصادي جداً

- القانون يقول انه لكي يحقق يجب ان لا تزيد الفرق بين مركز الكتلة ومركز الجساءة في كل اتجاه عن ٥% من طول المنشاء.

(4.3+1.45)×4	l+(1.4+1.4+2)×2+5.5×2	
لياً بالمتر	طول الجدران الموجودة حا	
		43.6
43.6 * 0.3	مساحة الجدران الموجودة	13.1 -
576 * 0.015	مساحة الجدران المحتاج لها المبناء	8.64

تشييك نسبة مساحة جدران القص من مساحة المنشاء

❖ محددات التحليل الزلزالي حسب الكود (ASCE 7-16):-

الجداول المستخدمه من الكود:

1-Specify the Risk Category (ASCE 7-16 Table 1.5-1) (تحديد منطقة الخطورة)

2-Specify the Importance Factor (ASCE 7-16 Table 1.5-2) / (تحديد معامل أهمية المنشاء)

3-Specify the Site Class Factor (ASCE 7-16 Table 20.3-1) (معامل تصنيف التربة)

4-Determine the Ground Motion Parameters (ASCE 7-16 11-4) همددات حركة الأرض)

5-Specify Seismic Design Category (ASCE 7-16 Tables 11.6-1 & 11.6-2) منطقة التصميم الزلزالي)

6-Select the Structural System (ASCE 7-16 Table 12.2-1) (تحدید نظام المنشاء)

	Mapped Risk-Targeted Maximum Considered Earthquake (MCE _n Response Acceleration Parameter at Short Period					
Site Class	$S_S \leq 0.25$	S _S = 0.5	S _S = 0.75	S _S = 1.0	S _S = 1.25	S _S ≥ 1.5
^	0.8	0.8	0.8	0.8	0.8	0.8
В	0.9	0.9	0.9	0.9	0.9	0.9
C	1.3	1.3	1.2	1.2	1.2	1.2
D	1.6	1.4	1.2	1.1	1.0	1.0
E	2.4	1.7	1.3	See	See	See
				Section	Section	Section
				11.4.8	11.4.8	11.4.8
F	See	See	See	See	See	See
	Section	Section	Section	Section	Section	Section
	11.4.8	11.4.8	11.4.8	11.4.8	11.4.8	11.4.8

	Mapped Ris	thquake (MC t 1-s Period	E _R) Spect			
Site Class	$S_1 \leq 0.1$	$S_1 = 0.2$	$S_1 = 0.3$	S ₁ = 0.4	S ₁ = 0.5	S₁ ≥ 0.6
^	0.8	0.8	0.8	0.8	0.8	0.8
В	0.8	0.8	0.8	0.8	0.8	0.8
C	1.5	1.5	1.5	1.5	1.5	1.4
D	2.4	2.2"	2.0^{a}	1.9"	1.8"	1.7"
E	4.2	See	See	See	See	See
		Section	Section	Section	Section	Section
		11.4.8	11.4.8	11.4.8	11.4.8	11.4.8
F	See	See	See	See	See	See
	Section	Section	Section	Section	Section	Section
	11.4.8	11.4.8	11.4.8	11.4.8	11.4.8	11.4.8

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, I _s	Ice Importance Factor— Thickness, I _i	Ice Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
I	0.80	0.80	1.00	1.00
11	1.00	1.00	1.00	1.00
III	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

TABLE 11.6-1 Seismic Design Category Based on Short-Period Response Acceleration Parameter

	Risk Cat	egory
Value of S _{DS}	I or II or III	IV
$S_{DS} < 0.167$ $0.167 \le S_{DS} < 0.33$ $0.33 \le S_{DS} < 0.50$ $0.50 \le S_{DS}$	Α	Α
$0.167 \le S_{DS} < 0.33$	В	C
$0.33 \le S_{DS} < 0.50$	C	D
$0.50 \le S_{DS}$	D	D

TABLE 11.6-2 Seismic Design Category Based on 1-s Period Response Acceleration Parameter

_	Risk Category		
Value of S _{D1}	I or II or III	IV	
$S_{D1} < 0.067$	Α	A	
$0.067 \le S_{D1} < 0.133$	В	C	
$0.133 \le S_{D1} < 0.20$	C	D	
$0.20 \le S_{D1}$	D	D	

Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads

Use or Occupancy of Buildings and Structures	Risk Category	
Buildings and other structures that represent low risk to human life in the event of failure	I	
All buildings and other structures except those listed in Risk Categories I, III, and IV	П	
Buildings and other structures, the failure of which could pose a substantial risk to human life	Ш	
Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure		

Buildings and other structures not included in Risk Category

Table 20.3-1 Site Classification

Site Class	\bar{v}_s	\bar{N} or \bar{N}_{ch}	\tilde{s}_u
A. Hard rock	>5,000 ft/s	NA	NA
B. Rock	2,500 to 5,000 ft/s	NA	NA
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50 blows/ft	>2,000 lb/ft ²
D. Stiff soil	600 to 1,200 ft/s	15 to 50 blows/ft	1,000 to 2,000 lb/ft ²
E. Soft clay soil	<600 ft/s	<15 blows/ft	<1,000 lb/ft ²
	Any profile with more than — Plasticity index PI > — Moisture content w ≥ — Undrained shear strer	40%,	aracteristics:
F. Soils requiring site response analysis in accordance with Section 21.1	See Section 20.3.1		

Note: For SI: 1 ft = 0.3048 m; 1 ft /s = 0.3048 m/s; 1 lb /ft² = 0.0479 kN/m².

❖ محددات التحليل الزلزالي حسب الكود (16-7-ASCE):-

- معامل الأهمية للمنشاء: I=1
- تصنيف التربة: هي تربة حصوية كثيفة مقاومتها = 250 KN/m²

(تم افتراض تصنيف التربة C بنائاً على كلام الدكتور الصافي كون التربة D لم تشيك معنا في قدرة تحمل الاحمال من اللبشة)

البارا مترات الزلزالي: حسب منطقة صنعاء Ss = 0.83 S1 = 0.26

- معامل التصنيف الزلزالي: SDC = D
 - نوع النظام الانشائي:

هو النظام المختلط Dual System جدران مع IMRF يعني جدران قص مع إطارات مقاومة للعزوم من النوع المتوسط.

تم استخدام هذا النظام لانه اطار فراغي تام يومن سند الاحمال الشاقولية، ومقاوم للقوى الجانبية، واستخدمناه لأننا في المنطقة الزلزالية الثانية ٢ او اقل.

معامل تخفيض القوى الزلزالية R = 6.5

معامل تضخيم الانحناء (الدفلكشن) (Table 12.2-1

Table 12.2-1 Design Coefficients and Factors for Seismic Force-Resisting System

					Structural System Limitations Including Structural Height, h _n (ft) Limits ^d				
	ASCE 7 Section Where Detailing Requirements	Response Modification	Overstrength	Deflection Amplification		Seismic Design Category			
Seismic Force-Resisting System	Are Specified	Coefficient, R*	Factor, Ω_0^{b}	Factor, C _d °	В	С	D*	E"	F
DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE	12.2.5.1								
F RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES									
Steel eccentrically braced frames	14.1	8	21/2	4	NL	NL	NL	NL	1
Steel special concentrically braced frames	14.1	7	21/2	51/2	NL	NL	NL	NL	N
Special reinforced concrete shear walls ^{g,h}	14.2	7	21/2	51/2	NL	NL	NL	NL	1
Ordinary reinforced concrete shear walls ^g	14.2	6	21/2	5	NL	NL	NP	NP	1
Steel and concrete composite eccentrically braced frames	14.3	8	21/5	4	NI.	NI.	NI.	NI.	1
Steel and concrete composite special concentrically braced frames	14.3	6	21/2	5	NL	NL	NL	NL	1
Steel and concrete composite plate shear walls	14.3	71/2	21/2	6	NL	NL	NL	NL	
Steel and concrete composite special shear walls	14.3	7	21/2	6	NL	NL	NL	NL	
Steel and concrete composite ordinary shear walls	14.3	6	21/2	5	NL	NL	NP	NP	23
). Special reinforced masonry shear walls	14.4	51/2	3	5	NL	NL	NL	NL	83
. Intermediate reinforced masonry shear walls	14.4	4	3	31/2	NL	NL	NP	NP	
2. Steel buckling-restrained braced frames	14.1	8	21/2	5	NL	NL	NL	NL	1
Steel special plate shear walls	14.1	8	21/2	61/2	NL	NL	NL	NL	
DUAL SYSTEMS WITH INTERMEDIATE MOMENT FRAMES APABLE OF RESISTING AT LEAST 25% OF PRESCRIBED EISMIC FORCES	12.2.5.1								
Steel special concentrically braced frames ^p	14.1	6	21/2	5	NL	NL	35	NP	
Special reinforced concrete shear wallsg.h	14.2	(61/2)	(21/2)	(5)	NL	NL	(160)	100	
Ordinary reinforced masonry shear walls	14.4	3	3	21/2	NL	160	NP	NP	
Intermediate reinforced masonry shear walls	14.4	31/2	3	3	NL	NL	NP	NP	
Steel and concrete composite special concentrically braced frames	14.3	51/2	21/2	41/2	NL	NL	160	100	1
Steel and concrete composite ordinary braced frames	14.3	31/2	21/2	3	NL	NL	NP	NP	1
Steel and concrete composite ordinary shear walls	14.3	5	3	41/2	NL	NL	NP	NP	N
Ordinary reinforced concrete shear walls ⁸	14.2	51/2	21/2	41/2	NL	NL	NP	NP	1

able 1: Estimated probabilistic seismic hazard for the center of Yemen cities with return periods of 475 and 2475 years. الجدول 1: تقدير للحركة الأرضية للزلازل لعراكز المدن الهملية بظرات عودة تبلغ 475 و 2475 سنة.

Major city	475-year return period	return	5-year period g) (IBC)
	PGA (in g) - (UBC97)	Ss (0.2 sec)	S ₁ (1.0 sec)
Sana'a	0.21	0.83	0.26
Al-Bayda	0.18	0.83	0.25
Al-Hudaydah	0.22	0.84	0.24
Al-Jawf	0.19	0.84	0.25
Al-Mahwit	0.20	0.83	0.24
*Amran	0.20	0.83	0.24
Dhamar	0.29	1.10	0.33
Hajjah	0.21	0.84	0.24
Ibb	0.24	0.89	0.25
Ma'rib	0.19	0.89	0.26
Raymah	0.21	0.84	0.24
Sa'dah	0.18	0.74	0.20
Taiz	0.22	0.87	0.24
Aden	0.23	0.89	0.24
Abyan	0.23	0.89	0.24
Dhale	0.22	0.90	0.27
Al-Mahrah	0.04	0.20	0.10
Hadramaut, Al-Mukalla	0.18	0.80	0.20
Hadramaut, Sayun	0.04	0.15	0.07
Shabwah , Ataq	0.09	0.15	0.06
Lahij	0.23	0.87	0.24

♦ حساب القوى الزلزالية عن طريق التحليل الديناميكي:-

💠 تحليل الأنماط:

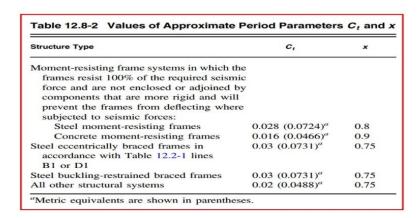
عدد الأنماط يساوي عدد درجات الحرية للمبناء

عدد أنماط الاهتزاز يساوى = ٣* عدد الأدوار = ٣ * ١١ = ٣٣ نماط

ولكن الكود يسمح باستخدام عدد أنماط اقل بحيث تكون نسبة مشاركة الكتل الكلية في هذه الأنماط

اكبر من (90%)، (section 12.9.1.2)

تم افتراض عدد ١٠ أنماط فكانت القيم من برنامج الروبوت:


مط	تم افتراض ١٠ أنماط فكانت زمن ونسبة ومشاركة كل نمط									
Mode	Frequency (Hz)	Period (sec)	Rel.mas. UX (%)	Rel.mas. UY (%)	Rel.mas. UZ (%)					
1	0.46	2.16	1.92	21.86	0					
2	0.51	1.97	3.45	73.05	0					
3	0.59	1.7	73.69	73.12	0					
4	1.73	0.58	73.89	73.77	0					
5	2.47	0.41	73.94	89.13	0					
6	2.8	0.36	89.39	89.14	0					
7	3.56	0.28	89.44	89.33	0					
8	6.02	0.17	89.45	89.42	0					
9	6.17	0.16	89.48	94.42	0					
10	6.86	0.15	94.49	94.43	0					

- نلاحظ من هذه النتائج ان نسبة مشاركة الكتل في البرنامج تجاوزت (90%) في النمط العاشر في كلا الاتجاهين لذلك لا داعي لزيادة عدد الأنماط عن ذلك.
- أما بالنسبة للازمنة فنلاحظ أن الزمن يكون أكبر ما يمكن في النمط الاول ويتناقص كلما انتقلنا الى الانماط الاخرى تدريجياً وذلك لأن المنشاء يشارك في الاهتزاز بأكبر نسبة في النمط ألاول وهذه النسبة تتناقص تدريجياً مع زيادة الانماط والنسب الموضحة أعاله في الجداول ماهي الانسب تراكمية.
- نظراً لأن النمط الاول يشارك بأكبر نسبة في الاهتزاز بالتالي فإن زمن النمط الاول سيكون قريب جداً من الزمن الطبيعي للمنشاء:

الزمن المحسوب للتحليل الديناميكي = 2.16

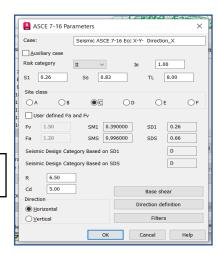
 $T_a = C_t * h^x$ (ASCE 7 – 16 Equ. 12.8.7)

الزمن المحسوب للتحليل الاستاتيكي = C_t , X محددات الزمن المحسوب للتحليل الاستاتيكي = $0.7 = (3.2*11)^{0.75}*0.0488$

نلاحظ ان الزمن الديناميكي اكبر من الزمن الاستاتيكي لذلك سوف نستخدم الزمن الاستاتيكي (ناخذ الزمن الاستاتيكي (ناخذ الزمن الاصغر).

❖ قوة القص القاعدي:-

يعتمد التحليل الديناميكي على تحليل الأنماط لا يجاد زمن دور المنشاء كما يعتمد على نفس المتغيرات الزلزالية الخاصة بتحليل طيف الاستجابة وهذه المتغيرات هي كالتالى:


S1=0.26 g Ss=0.83 g Site Class is "C" Fa=1.2 (Table 11.4-1 & 11.4-2) Fv=1.5 (Table 11.4-1 & 11.4-2)

SDS=0.66 g SD1=0.26 g R=6.5 Cd=5

الزمن الطويل 1.5 =Fv

الزمن القصير 1.2 =Fa

وهذه مخرجات برنامج الروبوت

تم التحليل بواسطة برنامج Robot وكانت قيم قوى القص القاعدية (الديناميكي) كالتالي:

Direction	القص القاعدي (kN)
X Direction	2751.07
Y Direction	2144.93

مشروع التخرج في الهندسة الإنشائية

♦ القص القاعدي (الستاتيكي):-

$$V_{base} = Cs * W = معامل استجابة الزلزال * وزن المنشاء$$

W = 110901.43 kN وزن المنشاء

$$S_a = \frac{SD_1}{T} = \frac{0.26}{0.705} = 0.3688$$

$$Cs = \frac{S_a}{\frac{R}{I}} = \frac{0.3688}{\frac{6.5}{1}} = 0.0567$$

 $V_{base} = 0.0567 * 110901.43 = 6288.11 kN$

ينص الكود في البند (ASCE 7-16 12.9.1.4.1) على أن قوة القص الديناميكية يجب ألا تقل ١٠٠% من قوة القص المحسوبة من التحليل الاستاتيكي في كلا الاتجاهين.

وعليه نلاحظ أن قوى القص الاستاتيكية اكبر من %١٠٠ من القوى الديناميكية لذلك نحتاج لتكبير القوى الزلزالية للتحليل الديناميكي.

حساب التوزيع الراسي لقوى القص الطابقية:

التوزيع الرأسي للقوى الزلزالية										
Story	کل دور VX	کل دور ۷۲	التراكمي (kN) VX	التراكمي (kN) VY						
1	30.54	25.76	2751.07	2144.93						
2	69.88	57.83	2720.53	2119.17						
3	111.02	89.53	2650.65	2061.34						
4	152.62	119.89	2539.63	1971.81						
5	194.39	149.01	2387.01	1851.92						
6	236.82	178.52	2192.62	1702.91						
7	280.9	210.43	1955.8	1524.39						
8	327.94	247.23	1674.9	1313.96						
9	379.31	290.89	1346.96	1066.73						
10	436.47	343.43	967.65	775.84						
11	481.84	390.68	531.18	432.41						
12	49.34	41.73	49.34	41.73						

❖ التحقق من الازاحة الطابقية Drift:

	المسموح بها	الازاجة			
-	U = 0.02*3.2	2*1000 =			
Name	ارتفاع الدور (m)	UX (mm)	UY (mm)	الازاجة المسموح بها (mm)	Check
Story 1	3.2	9	15	64	ok
Story 2	3.2	13	22	64	ok
Story 3	3.2	15	25	64	ok
Story 4	3.2	16	27	64	ok
Story 5	3.2	17	28	64	ok
Story 6	3.2	18	28	64	ok
Story 7	3.2	17	28	64	ok
Story 8	3.2	18	26	64	ok
Story 9	3.2	16	25	64	ok
Story 10	3.2	17	24	64	ok
Story 11	3.2	15	22	64	ok
Story 12	3.2	15	12	64	ok

❖ التحقق من إدخال أو إهمال تأثير P-Delta Effects:

$$\theta = \frac{P_x \Delta I_e}{V_x h_x C_d}$$

ASCE
$$7 - 16 \ Equ (12.8 - 16)$$

 P_x is the total design vertical load at and above level x, no load factor need to exceed 1.0

 Δ is the design story drift

 I_e is the importance factor

 V_x is the seismic shear force acting between level x and x-1

 h_x is the story height below level x

 C_d is the deflection amplification factor

ويجب الا تزيد قيمة θ عن القيمة التالية: $\sqrt{}$

$$\theta_{max} = \frac{0.5}{\beta C_d} \le 0.25$$

ASCE
$$7 - 16 \ Equ (12.8 - 17)$$

حيث ان:

is the ratio of shear demand to shear capacity for the story between Levels x and x-1. $oldsymbol{eta}$ This ratio

permitted to be taken as 1.0 conservatively.

√ في حالة عندما تكون:

$$0.1 \le \theta \le \theta_{max}$$

√ في هذه الحالة يتم ضرب كافة الإزاحات والقوى الداخلية التي على العناصر في معامل تكبير مقداره:

$$\frac{1}{1-\theta}$$

√ اما في حالة عندما تكون:

$$0.1 > \theta$$

√ فإن ذلك يدل على ان الإزاحات الأفقية قليلة جداً وعليه فإنه يتم إهمال هذا التأثير

√ وفي حالة إذا كانت:

$$\theta > \theta_{max}$$

√ في هذه الحالة فإن المنشاء يعد غير مستقر unstable ولابد من إعادة تصميمه

مشروع التخرج في الهندسة الإنشائية

	Check P∆ effect X Direction										
Story	Px (Kg)	Px (kN)	Px (kN) Total	Δle x (mm)	Vx (kN)	h (m)	Ð	O max	Check		
1	1019089	9997.265	110901.5	9	3737.05	3.2	0.015175	0.090909	Not Need		
2	1019089	9997.265	100904.2	13	3693.56	3.2	0.020179	0.090909	Not Need		
3	1019089	9997.265	90906.92	15	3595.78	3.2	0.021547	0.090909	Not Need		
4	1019089	9997.265	80909.66	16	3442.92	3.2	0.021364	0.090909	Not Need		
5	1019089	9997.265	70912.39	17	3235.53	3.2	0.02117	0.090909	Not Need		
6	1019089	9997.265	60915.13	18	2974.15	3.2	0.020947	0.090909	Not Need		
7	1019089	9997.265	50917.86	17	2657.72	3.2	0.018505	0.090909	Not Need		
8	1019089	9997.265	40920.6	18	2283.1	3.2	0.018331	0.090909	Not Need		
9	1019089	9997.265	30923.33	16	1844.41	3.2	0.015242	0.090909	Not Need		
10	1019089	9997.265	20926.07	17	1333.15	3.2	0.015162	0.090909	Not Need		
11	1019089	9997.265	10928.8	15	738.41	3.2	0.012614	0.090909	Not Need		
12	94957.96	931.5376	931.5376	15	72.17	3.2	0.011001	0.090909	Not Need		

	Check P∆ effect Y Direction										
Story	PY (Kg)	PY (kN)	PY (kN) Total	Δle Y (mm)	VY (kN)	h (m)	Ð	O max	Check		
1	1019089	9997.265	110901.5	15	7708.08	3.2	0.012262	0.090909	Not Need		
2	1019089	9997.265	100904.2	22	7613.76	3.2	0.016566	0.090909	Not Need		
3	1019089	9997.265	90906.92	25	7403.43	3.2	0.017442	0.090909	Not Need		
4	1019089	9997.265	80909.66	27	7079.63	3.2	0.017532	0.090909	Not Need		
5	1019089	9997.265	70912.39	28	6647.65	3.2	0.016971	0.090909	Not Need		
6	1019089	9997.265	60915.13	28	6112.36	3.2	0.015855	0.090909	Not Need		
7	1019089	9997.265	50917.86	28	5472.64	3.2	0.014802	0.090909	Not Need		
8	1019089	9997.265	40920.6	26	4720.04	3.2	0.012807	0.090909	Not Need		
9	1019089	9997.265	30923.33	25	3836.26	3.2	0.01145	0.090909	Not Need		
10	1019089	9997.265	20926.07	24	2794.82	3.2	0.01021	0.090909	Not Need		
11	1019089	9997.265	10928.8	22	1561.16	3.2	0.008751	0.090909	Not Need		
12	94957.96	931.5376	931.5376	12	72.25	3.2	0.008791	0.090909	Not Need		

لقد تم التشييك في برنامج الروبوت فوجدنا ان جميع الازاحات الافقية P-Delta Effects في كل دور على المحورين اصغر من (0.1) فتم اهمالها.

♦ التحقق من عزوم الانقلاب Overturning:

يعطي الكود المستخدم ASCE 7-16 Sec. 12.8.5أن أي منشأة يجب أن تصمم بحيث تقاوم تأثيرات الانقلاب التي تسببها القوى الجانبية الناتجة عن الحركة الزلزالية والتي قد تم حسابها مسبقاً فعند أي مستوى عزم الانقلاب الناتج عن القوة الأفقية Fx يجب أن يتم مقاومته عن طريق الأخذ بالاعتبار القوى والأوزان الرأسية المقاومة له ويتم حساب عزوم الانقلاب التي تؤثر على المنشاء من خلال المعادلة التالية:

$$M_{resisting} = \sum_{i=x}^{n} F_i * h_i$$

حيث أن:

Fi : القوة الزلزالية المطبقة في المنسوب (i)

hi : الارتفاع الذي تؤثر عنده القوة (Fi) من القاعدة

ويتم التحقق من أن المنشأة مقاومة للانقلاب إذا كانت النسبة بين العزوم المقاومة للانقلاب على العزوم المسببة للانقلاب اكبر من أو يساوي 1.5 أي إذا تحقق الشرط التالي:

$$F.S = \frac{M_{resisting}}{M_{overturning}} \ge 1.5$$

- سيتم التحقق من عزوم الانقلاب حيث أنه سيتم عمل الحسابات على تراكيب الأحمال الزلزالية الثانوية كونها أكثر حرجاً وذلك لان الحمل الميت فيها مخفض وهذه التراكيب كالتالي:
 - التراكيب في اتجاه X:

•
$$V_{X2,P}$$
= 0.8274 DL + V_{X2}

• التراكيب في اتجاه ٧:

• وقد تم أخذ النتائج للتراكيب الأكثر حرجاً في برنامج Robotوتم عمل الجداول التالية:

	تشییك الانقلاب على محور (X)										
Story	Mass (kg)	Mass (kN)	Xi (m)	M resesting (KN*m)	FX (kN)	Fx For each Story (KN)	Height (m)	Level (m)	M over turning (KN*m)	Check	
1	1019089	8447.689	36	152058.4	3737.05	43.49	3.2	3.2	139.168		
2	1019089	8447.689	36	152058.4	3693.56	97.78	3.2	6.4	625.792		
3	1019089	8447.689	36	152058.4	3595.78	152.86	3.2	9.6	1467.456		
4	1019089	8447.689	36	152058.4	3442.92	207.39	3.2	12.8	2654.592		
5	1019089	8447.689	36	152058.4	3235.53	261.38	3.2	16	4182.08		
6	1019089	8447.689	36	152058.4	2974.15	316.43	3.2	19.2	6075.456	17.74811462	
7	1019089	8447.689	36	152058.4	2657.72	374.62	3.2	22.4	8391.488	17.74011402	
8	1019089	8447.689	36	152058.4	2283.1	438.69	3.2	25.6	11230.464		
9	1019089	8447.689	36	152058.4	1844.41	511.26	3.2	28.8	14724.288		
10	1019089	8447.689	36	152058.4	1333.15	594.74	3.2	32	19031.68		
11	1019089	8447.689	36	152058.4	738.41	666.24	3.2	35.2	23451.648		
12	94957.96	787.1493	22.64	8910.52964	72.17	72.17	3.2	38.4	2771.328		
SUM				1681552.93	·	-			94745.44		

	تشييك الاتقلاب على محور (Y)										
Story	Mass (kg)	Mass (kN)	Yi (m)	M resesting (KN*m)	FY (kN)	FY For each Story (KN)	Height (m)	Level (m)	M over turning (KN*m)	Check	
1	1019089	8447.689	15.9	67159.1266	7708.08	94.32	3.2	3.2	301.824		
2	1019089	8447.689	15.9	67159.1266	7613.76	210.33	3.2	6.4	1346.112		
3	1019089	8447.689	15.9	67159.1266	7403.43	323.8	3.2	9.6	3108.48		
4	1019089	8447.689	15.9	67159.1266	7079.63	431.98	3.2	12.8	5529.344		
5	1019089	8447.689	15.9	67159.1266	6647.65	535.29	3.2	16	8564.64		
6	1019089	8447.689	15.9	67159.1266	6112.36	639.72	3.2	19.2	12282.624	2 702402000	
7	1019089	8447.689	15.9	67159.1266	5472.64	752.6	3.2	22.4	16858.24	3.792483989	
8	1019089	8447.689	15.9	67159.1266	4720.04	883.78	3.2	25.6	22624.768		
9	1019089	8447.689	15.9	67159.1266	3836.26	1041.44	3.2	28.8	29993.472		
10	1019089	8447.689	15.9	67159.1266	2794.82	1233.66	3.2	32	39477.12		
11	1019089	8447.689	15.9	67159.1266	1561.16	1488.91	3.2	35.2	52409.632		
12	94957.96	787.1493	4.6	1810.4433	72.25	72.25	3.2	38.4	2774.4		
SUM				740560.836					195270.656		

و نلاحظ من خلال هذه النتائج أن معامل الأمان أكبر بكثير من 1.5 أي أن الأوزان كفيلة بحماية المبنى من خطر الانقلاب.

♦ التحقق من نسبة مشاركة الاعمدة وجدران القص في مقاومة القوى الزلزالية:

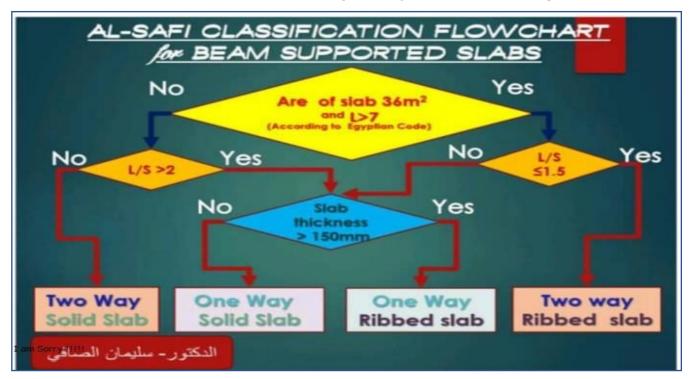
نظراً لكون النظام المستخدم في مشروعنا هو النظام المختلط (Dual System) بالتالي يجب ان تكون نسبة مساهمة الاعمدة في مقاومة الزلازل أكبر من %25 ونسبة مساهمة الجدرن أقل من %75

وقد تم أخذ نتائج نسبة المشاركة من برنامج الـ Robot وكانت كالتالي:

ور X	لزالية على المحو	مدة وجدران القص للقوى الزا	نسبة تحمل الاع
Name	FX (kN)	FX to columns (kN)	FX to walls (kN)
Story 1	2750.4	913.22	1837.17
Story 2	2719.92	474.83	2245.1
Story 3	2650.17	585.68	2064.49
Story 4	2539.34	631.83	1907.51
Story 5	2386.89	646.52	1740.36
Story 6	2192.59	648.44	1544.15
Story 7	1955.7	629.42	1326.27
Story 8	1674.57	589.86	1084.71
Story 9	1346.38	557.88	788.5
Story 10	966.94	459.95	506.99
Story 11	530.62	657.58	-126.96
Story 12	49.28	0	49.28
SUM	21762.8	6795.21	14967.57
		31.22	68.78

ور Y	لزالية على المح	سدة وجدران القص للقوى الز	نسبة تحمل الاع
Name	FY (kN)	FY to columns (kN)	FY to walls (kN)
Story 1	2147.26	765.47	1381.79
Story 2	2121.49	332.35	1789.14
Story 3	2063.61	443.35	1620.26
Story 4	1974.02	475.24	1498.77
Story 5	1854.01	499.38	1354.64
Story 6	1704.84	507.68	1197.16
Story 7	1526.12	504.6	1021.52
Story 8	1315.42	489.91	825.51
Story 9	1067.88	478.24	589.65
Story 10	776.65	412.14	364.51
Story 11	432.83	608.53	-175.69
Story 12	41.78	0	41.78
SUM	17025.91	5516.89	11509.04
		32.40	67.60

من خلال الجدولين نجد ان الاعمدة وجدران القص قد حققين الشرط على المحور X والمحور Y.

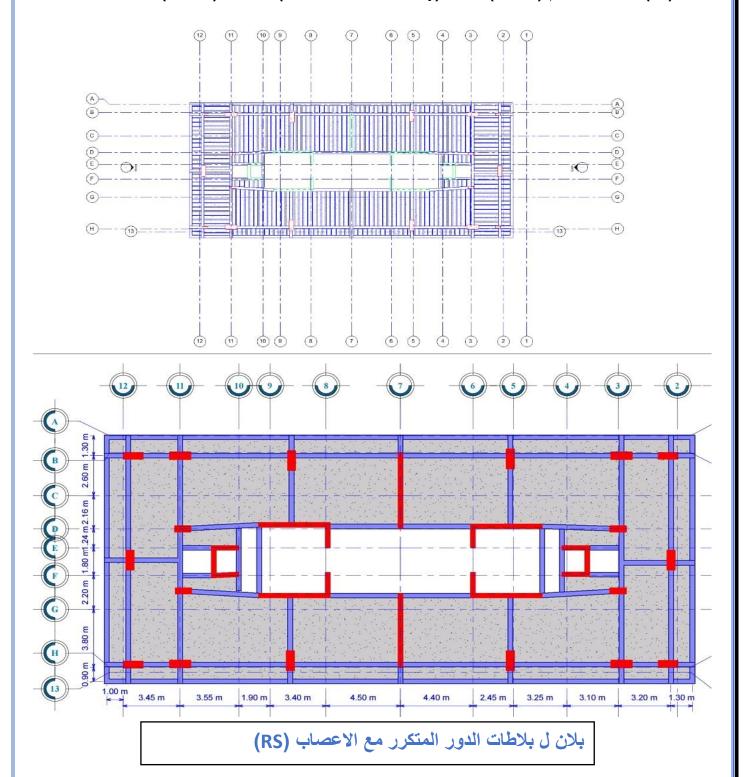

الباب الرابع

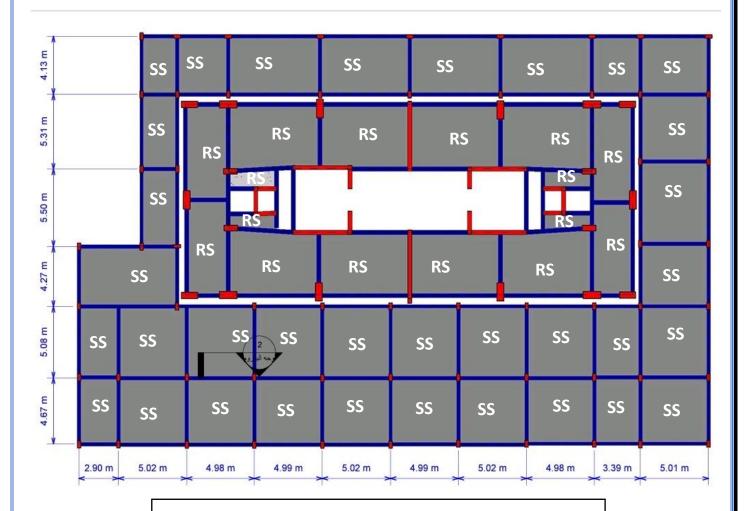
البلاطات

SLABS

جدول اختيار نوع البلاطات المستخدمة في المشاريع:

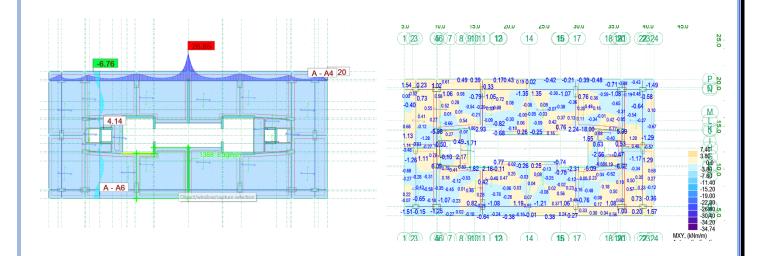
- مساحة البلاطة الواحدة اقل من 36 m².
- الاتجاه الطويل في البلاطة اقل من 7m.
- سماكة البلاطات حقنا اكبر من 150 mm.
- اذاً نوع البلاطات حقنا هو (One Way Ribbed Slab).
 - اكبر طول في البلاطات هو 6850 mm
 - البلاطات مستمرة مع جسور.

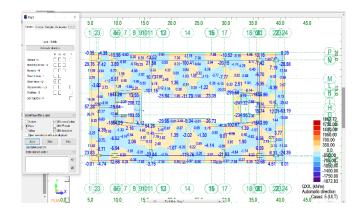

-
$$h = \frac{l}{28} = \frac{6850}{28} = 244.6 \ mm$$

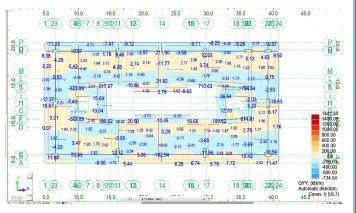

- =
$$\frac{l}{24} = \frac{6850}{24} = 285.4 \, mm$$
 use $\approx 300 \, \text{mm}$

- اذاً نوع البلاطات حقنا هو (One Way Ribbed Slab).

نوع البلاطات المستخدمة في المشروع


- (RS) البلاطات المتكررة نوعها (Ribbed Slab Won Way) سماكتها (30 cm)، بلاطة هردي ذو جسور ساقطة
 - (SS) بلاطات البدروم (الحوش) نوعها (Solid Slab Tow Way) سماكتها (T5 cm).




بلان ل بلاطات البدروم (الحوش مع المتكرر) مع الاعصاب

مشروع التخرج في الهندسة الإنشائية

عزوم البلاطات من الروبوت

قص البلاطات من الروبوت على المحور X

قص البلاطات من الروبوت على المحور Y

نموذج لتصميم البلاطات في مشروعنا (يدوي)

Material properties:

- Fc = 30 Mpa
- fy = 420 Mpa

Section properties:

- H= 300 mm
- B=150 mm
- Cover of concrete = 20 mm
- Mu+ Bottom = 13.5 KN.m
- Mu- Top = 3.5 Knm
- Vu = 25.5 Kn

Design for negative moment :

• Mu=
$$\frac{mu}{\emptyset} = \frac{3.5}{0.9} = 3.9 \text{ Kn.m}$$

• Use Ø 14 for main reinforcement

• d= h-c.c -
$$\frac{db}{2}$$
 - ds = 300 - 20 - $\frac{14}{2}$ - 10 = 263 mm

• Rn =
$$\frac{mn}{b+d^2}$$
 = $\frac{3.9*10}{150*263^2}$ = 0.376 mpa

•
$$M = \frac{Fy}{0.85*Fc} = \frac{420}{0.85*30} = 16.4$$

•
$$\rho = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2Rn \cdot m}{fy}} \right) =$$

$$\frac{1}{16.4} \left(1 - \sqrt{1 - \frac{2*0.376*16.4}{420}} \right) = 0.00090$$

• As = ρ bd = 0.0009 * 150 *263 = 35.5 mm²

As min = 0.25 *
$$\frac{\sqrt{fc}}{fy}$$
 * $bw * d = 0.25 * \frac{\sqrt{30}}{420}$ * $150 * 263 = 128.6 \text{ mm}^2$

• As min =
$$\frac{1.4}{fy} * bd = \frac{1.4}{420} *150 * 263 = 131.5 \text{ mm}^2$$

• Use As min
$$\approx 131.5 \text{ mm}^2$$
 Use $2 \frac{\emptyset 14}{rip}$

Design for positive moment :

• Mu=
$$\frac{mu}{\emptyset} = \frac{13.5}{0.9} = 15 \text{ Kn.m}$$

Use Ø 14 for main reinforcement

• d= h-c.c -
$$\frac{db}{2}$$
 - ds = 300 - 20 - $\frac{14}{2}$ - 10 = 263 mm

• Rn =
$$\frac{mn}{b+d^2}$$
 = $\frac{15*10}{150*263^2}$ = 1.44 mpa

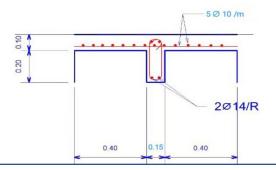
•
$$M = \frac{Fy}{0.85*Fc} = \frac{420}{0.85*30} = 16.4$$

$$\bullet \quad \rho = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2Rn * m}{fy}} \right) =$$

$$\frac{1}{16.4} \left(1 - \sqrt{1 - \frac{2*1.44*16.4}{420}} \right) = 0.0035$$

• As =
$$\rho bd = 0.00.35^* 150 *263 = 138 \text{ mm}^2$$

• As min = 0.25 *
$$\frac{\sqrt{fc'}}{fy}$$
 * $bw * d = 0.25 * \frac{\sqrt{30}}{420}$ * $150 * 263 = 128.6$ mm²

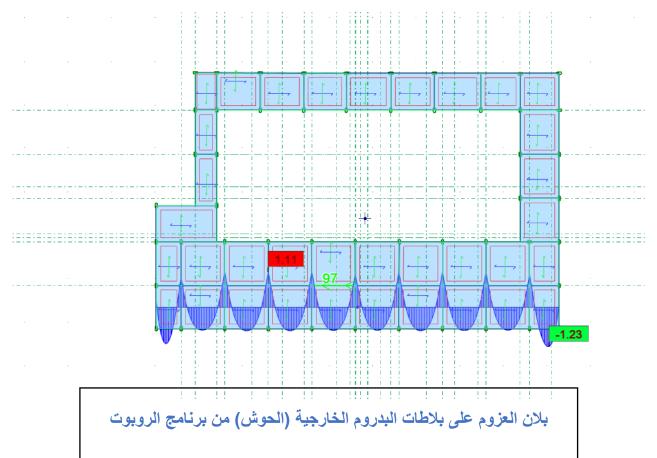

• As min =
$$\frac{1.4}{fy} * bd = \frac{1.4}{420} *150 * 263 = 131.5 \text{ mm}^2$$

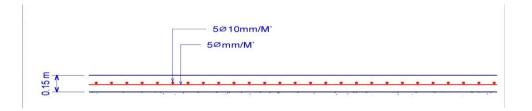
• Use As min
$$\approx 138 \text{ mm}^2$$
 Use $2 \frac{\text{Ø}14}{rip}$

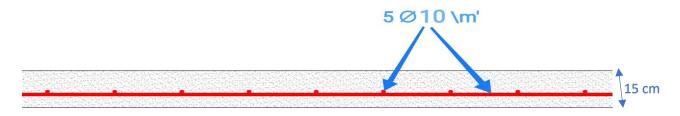
نقوم بفرض شبكة سفلية وعلوية للبلاطة 10 km 5 Ø 10

Cheack of shear :-

$$\emptyset Vc = \emptyset \frac{1}{6} \sqrt{Fc'}bd = 0.75 \times \frac{1}{6} \times \sqrt{30} \times 150 \times 263 * 10^{-3} = 27 \ KN > Vu \ ok$$


ملاحظة:


اخذنا اكبر بالاطة و اكبر عزم وتم التصميم عليها فكان تصميمها اقل تسليح (Min) لذلك تم التعميم على بقية البلاطات الهردي نفس التصميم (min).


بلاطات الدور الأرضي (الحوش):

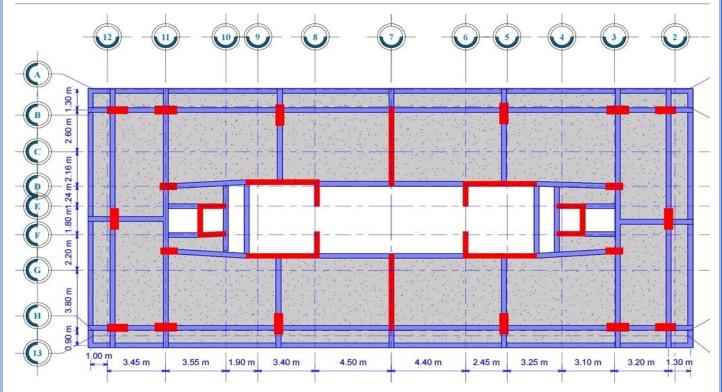
عبارة عن (Solid Slabs) بسماكة (To cm) بسماكة

تسليحها (min) = 01 Ø 5 لكل اتجاه.

البابء الخامس

الجسور

BEAUS



نوع الجسور المستخدمة في المشروع:

هي جسور هردية ساقطة

Fc' = 30 Mpa

Fy = 420 Mpa

نموذج لتصميم الجسور في مشروعنا (يدوي)

Beam No	section		Mu (kN.m)	Vu (KN)	Tu (KN.m)	
	hogin	Top	250.5	199	5.39	
	begin	Bottom	154.3	199		
B1	mid	Top	13.7	200	10.3	
וט	IIIIu	Bottom	263.36	200	10.5	
	Top 203		200	10.2		
	end	Bottom	126	200	10.3	

العزم والقص و التورشن على الجسر (B1) من برنامج الروبوت

ملاحظة:

تم اخذ القوى والعزوم عند بداية الجسر وتم تصميمها يدوياً للتوضيح.

اما المنتصف والنهاية فقد تم تصميمها في برنامج الروبوت وشرائح الاكسل وتم توضيحها في جداول مرفقة نهاية الحل.

Date:-

- Material properties:-
- $f_{c} = 30Mpa$
- $f_v = 420 \text{ Mpa}$
- Span of beam (L)=6.8m

❖ Section properties :-

- h=700mm
- b=300mm
- Cover of concrete = 40 mm

❖ Design forces :-

- $M_u(bottom) = 154.32 \text{ KN. m}$
- $M_u(top) = 250.47 \text{ KN. m}$
- $T_u = 5.39 \text{ KN. m}$
- $V_u = 199 \text{ KN}$

❖ Check for deflection :-

$$h_{min} = \frac{l_n}{21} = \frac{6.8*1000}{21} \left(0.4 + \frac{Fy}{700} \right) = 420 < h_{use} = 700 mm \dots deflecion \ is \ ok$$

❖ Design of top moment :-

Assume use $\emptyset r=18mm$ for moment design and assume one row and assume $\emptyset s=10mm$ for design of shear

$$\mathbf{d} = \mathbf{d_t} = \mathbf{h} - \mathbf{c}.\,\mathbf{c} - \emptyset \mathbf{s} - \frac{\emptyset \mathbf{r}}{2} = 700 - 40 - 10 - \frac{18}{2} = 641 \text{ mm}$$

$$M_u(top) = 250 \text{ KN}.$$

$$B_f = \min of \begin{cases} 16H_f + b_w \\ \frac{span}{4} \\ slap \end{cases}$$

$$span\ from\ both\ sides egin{cases} 16 imes400+300=6700mm \ \dfrac{6800}{4}=1700mm \ 3625mm \end{cases}$$

$$M_f = 0.9 \times 0.85 \times 30 \times 1700 \times 420 \left(641 - \frac{420}{2}\right)$$

 $M_f = 7062KN.\,m > 250KN.\,m$

Use b = bf = 1700mm

$$: As_{min} = max of \begin{cases} \frac{0.25\sqrt{fc'}}{fy} \\ \frac{1.4}{f} \end{cases} * bd$$

$$=\frac{0.25\sqrt{30}}{420}*1700*641 \geq \frac{\sqrt{30}}{2*420}*300*641 = 3552.7mm^2 < 1253.9mm^2$$

 $A_{S min} = 1253.9 \text{ mm}^2$

$$eta_1 = 0.85 - 0.05 \left(\frac{f_c - 28}{7} \right) = 0.693$$

 $\beta_1=0.693\;because\;f_{c`}=30\;Mpa$

$$\rho_b = 0.85 \beta_1 \frac{f_{c`}}{f_y} \bigg(\frac{600}{600 + f_y} \bigg) = 0.85 * 0.693 * \frac{30}{420} \bigg(\frac{600}{600 + 420} \bigg)$$

$$\rho_b = 3\%$$

$$\rho_{max} = \rho_b \left(\frac{0.003 + \frac{f_y}{E_s}}{0.008} \right) = \rho_b \left(\frac{0.003 + \frac{420}{200,000}}{0.008} \right)$$

$$\rho_{max} = 0.\,7\rho_b = \ 0.\,7*3\% = 2.\,1\%$$

$$\rho = \frac{0.85 f_{c}}{f_{y}} \left(1 - \sqrt{1 - \frac{2 * M_{u}}{1.70 f_{c} bd^{2}}} \right)$$

$$= \frac{0.85 * 30}{420} \left(1 - \sqrt{1 - \frac{2 * 250 * 10^6}{1.7 * 0.9 * 30 * 1700 * 641^2}} \right) = 0.047\%$$

so $\rho = 0.047\%$

and since $\rho < \rho_{max}$ so it is Singly reinforcement and tension controlled

$$A_s = \rho bd = \frac{0.047}{100} * 1700 * 641 = 512.16 \text{ mm}^2$$

 $As_{\min} = 1253.9mm^2 use 512.mm^2$

بما ان مساحه التسليح اصغر من الحد الادنى المسموح به نصمم على الحد الادنى

n. b =
$$\frac{A_s}{\frac{\pi * d^2}{4}} = \frac{1253.9}{\frac{\pi * 18^2}{4}} = \approx (7018 \text{ mm})$$

 $A_{s \text{ (provides)}} = 1272.3 \text{mm}^2$

$$a = \frac{A_s f_y}{0.85 f_{c`} b} = \frac{1272.3 * 420}{0.85 * 30 * 300} = 69.8 \text{ mm}$$

$$C = \frac{a}{\beta_1} = \frac{69.8}{0.693} = 100.7 \text{mm}$$

$$\epsilon_t = \frac{d_t - C}{C} \epsilon_{cu} = \frac{641 - 100.7}{100.7} * 0.003 = 0.016 > 0.005 \text{ OK so } (\emptyset = 0.9)$$

$$\therefore \emptyset = 0.9 \text{ OK}$$

$$\emptyset M_n = \emptyset f_y A_s \left(d - \frac{a}{2} \right) = 0.\,9*420*1272.\,3* \left(641 - \frac{100.\,7}{2} \right) *\,10^{-6}$$

$$\emptyset M_n = 284.1$$
KN. $m > Mu ... OK$

Design for bottom moment :-

$$M_u(bottom) = 154.32KN.m$$

Assume $(\epsilon_t > 0.005 \ and \ \emptyset = 0.9)$

$$\rho = \frac{0.85 f_{c`}}{f_y} \bigg(1 - \sqrt{1 - \frac{4*M_u}{1.70 f_{c`} bd^2}} \bigg)$$

$$\rho = \frac{0.85*30}{420} \left(1 - \sqrt{1 - \frac{4*154.32*10^6}{1.7*0.9*30*1700*641^2}} \right) = 0.058$$

since $\rho < \rho_{max}$ ok (Singly Reinforced)

$$A_s = \rho * bd = \frac{0.058}{100} * 1700 * 641 = 632.0 \text{mm}^2$$

$$\begin{split} A_{S\,min} &= \frac{0.\,25\sqrt{f_{c^{`}}}}{f_{y}}\,b_{w}d \geq \frac{1.\,4}{f_{y}}\,b_{w}d = \frac{0.\,25\sqrt{30}}{420} *\,300*\,641 \geq \frac{1.\,4}{420} *\,300*\,641 \\ &= 641\;mm^{2} < 356mm^{2} \end{split}$$

بما ان مساحه التسليح اصغر من الحد الادنى المسموح به نصمم على الحد الادنى

$$n. b = \frac{A_s}{\frac{\pi * d^2}{4}} = \frac{641}{\frac{\pi * 18^2}{4}} = \approx (3\emptyset 18mm)$$

 $A_{s (provides)} = 763.4 \text{ mm}^2$

$$a = \frac{A_s f_y}{0.85 f_c b} = \frac{763.4 * 420}{0.85 * 30 * 300} = 41.9 \text{ mm}$$

$$C = \frac{a}{\beta_1} = \frac{41.9}{0.693} = 60.5 \text{ mm}$$

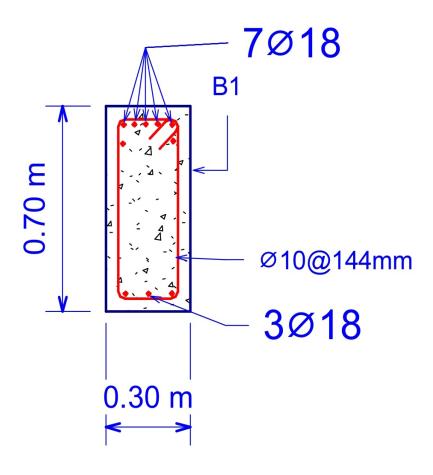
$$\epsilon_t = \frac{d_t - C}{C} \epsilon_{cu} = \frac{641 - 60.5}{60.5} * 0.003 = 0.0287 > 0.005 \text{ OK so } (\emptyset = 0.9) \text{OK}$$

$$\emptyset M_n = \emptyset f_y A_s \left(d - \frac{a}{2} \right) = 0.9 * 420 * 763.4 * \left(641 - \frac{41.9}{2} \right) * 10^{-6}$$

$$\emptyset M_n = 178.92 \text{ KN. m} > Mu = 154.32 \text{ Kn. m}$$

Check for shear :-

$$\emptyset Vc = \emptyset \sqrt{Fc'} * b * d = 0.75 * 5.477 * 300 * 641 = 78.99 KN$$


$$Vs = \frac{Vu}{\emptyset} - Vc = \frac{199}{0.75} - 78.99 = 186.34 \text{ KN}$$

$$S = \frac{2 * \frac{3.14}{4} * 10^2 * 420 * 641}{186.34} = 692 \text{ mm}$$

$$S_{max} = min\ of \begin{cases} \frac{d}{2} = \frac{641}{2} = 320.5 \\ 600 \end{cases}$$

 $S_{use} = 320mm$

 $Use\ strips\ \emptyset 10@320mm$

جداول عزوم وتورشن وقص الجسور المتكررة الهردي من برنامج الروبوت

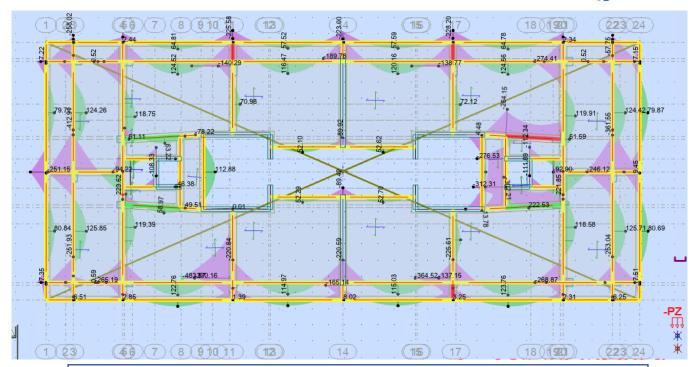
نتائج الجسور الهردي من برنامح الروبوت

		.55 (بور بهردي من بر 		_	
Beam No	sec	ction	Mu (kN.m)	Vu (KN)	Tu (KN.m)	
	boa	(-ve)	-253.82	200	0.2	
	beg	(+ve)	-261.01	200	9.3	
_	.	(-ve)	-253.82	400		
1	mid	(+ve)	0.15	198	9.3	
		(-ve)	0.28			
	end	(+ve)	-261.01	200	9.3	
		(-ve)	-420.16			
	beg	(+ve)	-0.13	303	0.6	
100		(-ve)	-167.2			
4	mid	(+ve)	-360.63	259	1.4	
		(-ve)	263.32			
	end	(+ve)		303	0.6	
			-420.16			
	beg	(-ve)	-449.96	662	8	
		(+ve)	0.05			
2	mid	(-ve)	-396.53	572	11.5	
		(+ve)	3.78			
	end	(-ve)	3.78	662	8	
		(+ve)	-449.96		0	
	beg	(-ve)	-105.28	108	8.3	
		(+ve)	-129.49	100	0.0	
6	mid end	(-ve)	-105.28	101	8.3	
		(+ve)	0.04	101	0.5	
		(-ve)	0.04	100	8.3	
	enu	(+ve)	-129.49	108	0.3	
	h	(-ve)	72.23	000	40.5	
	beg	(+ve)	-321.54	236	13.5	
•		(-ve)	-0.09	07	40.5	
3	mid	(+ve)	72.23	87	13.5	
		(-ve)	72.23			
	end	(+ve)	-321.54	236	13.5	
		(-ve)	-159.87			
	beg	(+ve)	77.6	160.48	13.43	
		(-ve)	-19.31			
6	mid	(+ve)	50.77	46.99	11.63	
		(-ve)	-103.24			
	end	(+ve)	57.1	41.82	13.43	
		(-ve)	-94.85			
	beg	(+ve)	33.69	100.32	8.44	
		(-ve)	-6.27			
7	mid		38.5	29.49	7.12	
		(+ve)				
	end	(-ve)	-87.07	74.97	8.44	
		(+ve)	34.92			
_	beg	(-ve)	-129.36	156.03	20.74	
8		(+ve)	24.77			
	mid	(-ve)	-2.29	19.17	39.97	

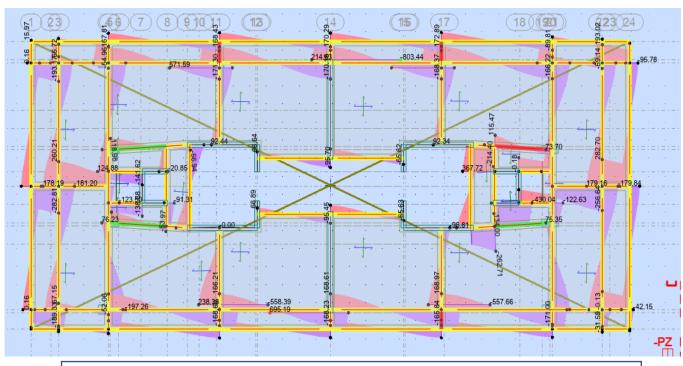
		(+ve)	26.56		
		(-ve)	-65.44		00 74
	end	(+ve)	22.08	78.28	20.74
		(-ve)	-83.96		
	beg	(+ve)	6.12	142.87	5.61
200		(-ve)	-1.48	10	
9	mid	(+ve)	55.65	7.21	7.52
		(-ve)	-94		
	end	(+ve)	4.03	128.55	5.61
		(-ve)	-91.93		
	beg	(+ve)	4.63	146.76	6.62
		(-ve)	-1.6		
10	mid	(+ve)	56.22	6.51	8.41
		(-ve)	-85.41		
	end		4.33	126.53	6.62
		(+ve)			
	beg	(-ve)	-64.16	116.75	33.64
		(+ve)	16.55		
11	mid	(-ve)	-1.68	16.93	18.24
		(+ve)	28.2		
	end	(-ve)	-115.25	119.1	33.64
		(+ve)	17.37		
	beg mid end	(-ve)	-2.08	43.56	0
		(+ve)	34.5		
12		(-ve)	-5.88	28.54	0
		(+ve)	46.06		
		(-ve)	-27.08	86.35	0
	0	(+ve)	0.82	00.00	
	beg	(-ve)	-30.24	99.65	4.71
	Dog	(+ve)	7.14	00.00	1.7.1
13	mid	(-ve)	-0.49	13.2	4.3
		(+ve)	39.66	10.2	1.0
	end	(-ve)	-25.95	69.33	4.71
	Citu	(+ve)	10.06	00.00	7.71
	beg	(-ve)	-35.85	109.98	10.9
	beg	(+ve)	7.09	103.30	10.3
14	mid	(-ve)	-2.98	13.68	12.45
14	IIIIu	(+ve)	44.36	13.00	12.43
	and	(-ve)	-65.22	115.01	10.9
	end	(+ve)	1.4	115.01	10.9
	hom	(-ve)	-56.99	120.05	15 50
	beg	(+ve)	0.54	129.85	15.58
15	poi al	(-ve)	-3.05	11 10	12.04
15	mid	(+ve)	44.27	11.19	12.94
		(-ve)	-35.34	00.00	45.50
	end	(+ve)	4.71	90.69	15.58
		(-ve)	-146.09	400.70	40.40
16	beg	(+ve)	5.29	192.79	13.42
	mid	(-ve)	-2.11	82.84	7.52
		\ - 3/			

		(+ve)	63.34		
		(-ve)	-10.05		
	end	(+ve)	110.99	31.1	16.7
		(-ve)	-6.48		
	beg	(+ve)	84.4	26.85	22.11
		(-ve)	-2.83		
17	mid	(+ve)	53.23	62.25	17.33
		(-ve)	-166.93		
	end	(+ve)	0.64	143.16	12.7
		(-ve)	-1.11		
	beg	(+ve)	27.91	40.26	0
		(-ve)	-3.41		_
18	mid	(+ve)	37.04	24.78	0
		(-ve)	-26.46	2012 E	
	end	(+ve)	3.5	80.31	0
		(-ve)	-59.55	1.2	_
	beg	(+ve)	9.56	106.67	0
		(-ve)	-6.06		
19	mid	(+ve)	47.36	11.78	0
		(-ve)	0		_
	end	(+ve)	0	75.02	0
	beg	(-ve)	0		
		(+ve)	0	153.44	0
	mid	(-ve)	-6.62		
20		(+ve)	80.56	112.68	0
		(-ve)	-217.84		
	end	(+ve)	5.47	277.35	0
		(-ve)	-94.75		
	beg	(+ve)	11.55	123.75	7.97
0.4		(-ve)	-0.35	0.00	7.00
21	mid	(+ve)	49.48	8.02	7.62
		(-ve)	-95.01	407.05	- 0-
	end	(+ve)	11.27	107.95	7.97
	L.	(-ve)	-217.89	000.0	
	beg	(+ve)	9.58	263.6	0
00	!	(-ve)	-9.51	407.50	
22	mid	(+ve)	83.65	107.53	0
		(-ve)	0	450.00	
	end	(+ve)	0	158.23	0
	h	(-ve)	-72.8	CF 45	0.00
	beg	(+ve)	78.32	65.45	9.89
23	mai d	(-ve)	-11.81	77.10	9.89
23	mid	(+ve)	19.03	77.19	9.09
	ond	(-ve)	-96.39	06.00	0.07
	end	(+ve)	62.93	86.89	9.87
	hoa	(-ve)	-64.54	06.63	12 20
24	beg	(+ve)	43.41	86.63	13.39
	mid	(-ve)	-18.16	50.61	14.9

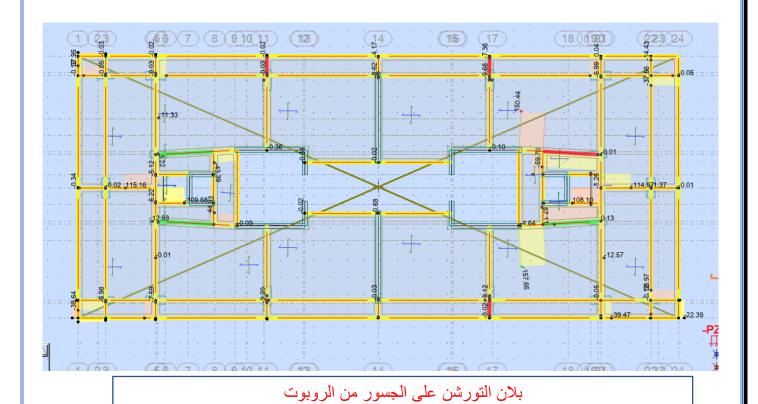
		(+ve)	34.31		
		(-ve)	-132.97	05.00	0.00
	end	(+ve)	66.56	35.29	9.68
		(-ve)	-167.17	445.04	40.00
	beg	(+ve)	95.31	145.84	10.99
25	:	(-ve)	-19.03	F7 1C	C 40
25	mid	(+ve)	44.49	57.16	6.49
	end	(-ve)	-74.81	86.69	10.99
	enu	(+ve)	70.85	00.09	10.55
	beg	(-ve)	-80.81	55.73	0
	beg	(+ve)	90.51	33.73	U
26	mid	(-ve)	-40.41	62.42	0
20	IIIIu	(+ve)	57.14	02.72	
	end	(-ve)	0	63.68	0
	Cita	(+ve)	0	00.00	•
	beg	(-ve)	0	84.61	0
	9	(+ve)	0	J., J.	
27	mid	(-ve)	-48.48	66.87	0
		(+ve)	66.69		
	end	(-ve)	-96.97	90.94	0
		(+ve)	109.61		
	beg mid end	(-ve)	-51.8	90.32	8.89
		(+ve)	43.8		
28		(-ve)	-12.44	54.4	12.68
		(+ve)	35.27		
		(-ve)	-131.05	51.93	5.27
		(+ve) (-ve)	57.9 -131.58		
	beg	(+ve)	54.28	140.54	12.73
		(-ve)	-13.36		
29	mid	(+ve)	43.75	37.58	7.28
	200	(-ve)	-86.53		
	end	(+ve)	49.24	41.89	12.73
		(-ve)	-91.33		
	beg	(+ve)	47.36	90.68	6.88
		(-ve)	-10.2	44.65	
30	mid	(+ve)	23.1	44.22	7.62
		(-ve)	-75.09	F0.07	0.00
	end	(+ve)	70.17	59.85	6.88
	her	(-ve)	-189.83	100.04	10.7
	beg	(+ve)	118.53	123.34	12.7
31	mid	(-ve)	-50.72	70.62	12.7
31	IIIIu	(+ve)	42.14	70.62	12.7
	end	(-ve)	-84.62	54.45	12.7
	enu	(+ve)	38.21	34.43	12.7
	beg	(-ve)	-111.57	122.49	6.5
32		(+ve)	46.88	122.43	
	mid	(-ve)	-27.44	51.59	5.53


		(+ve)	48.85		
		(-ve)	-138.02		
	end	(+ve)	101.87	89.41	6.5
		(-ve)	-169.47		
	beg	(+ve)	109.78	136.71	9.1
33	mid	(-ve)	-12.23	65.82	8.62
		(+ve)	38.53		
	end	(-ve)	-122.95	104.45	9.1
		(+ve)	92.08		
	beg	(-ve)	-134.45	135.55	8.55
		(+ve)	90.35	200.000	
34	mid	(-ve)	-8.81	80.43	8.15
		(+ve)	21.87		
	end	(-ve)	-142.58	112.84	8.55
	0	(+ve)	110.61		0.00
	beg	(-ve)	-94.7	86.29	0
	209	(+ve)	52.02	30.20	•
35	mid	(-ve)	-32.11	20.22	0
33	IIIIu	(+ve)	56.01	20.22	•
	end	(-ve)	-3.03	58.68	0
	Cilu	(+ve)	9.21	30.00	U
	hoa	(-ve)	-0.71	105.7	0
	beg	(+ve)	71.45	103.7	U
36	mid	(-ve)	-3.68	74.01	0
30		(+ve)	132.96	74.01	U
		(-ve)	-229.74	200.46	0
		(+ve)	10.67	200.46	U
	baa	(-ve)	-141.6	00.07	C 22
	beg	(+ve)	30.86	92.97	6.32
07		(-ve)	-18.2	F7 07	0.00
37	mid	(+ve)	4.16	57.37	6.32
		(-ve)	-42.17		0.70
	end	(+ve)	59.2	22.6	2.76
		(-ve)	-66.93		
	beg	(+ve)	40.24	62.29	5.4
	,,,,	(-ve)	-3.54		
38	mid	(+ve)	17.87	24.69	6.32
		(-ve)	-56.15		
	end	(+ve)	35.57	21.36	5.4
		(-ve)	-55.46		
	beg	(+ve)	35.44	60.11	7.12
		(-ve)	-1.75		
39	mid	(+ve)	10.55	29.24	5.85
			-53.04		
	end	(-ve)	VA-V-V-V-V	25.34	7.12
		(+ve)	37.4		
40	beg	(-ve)	-63.1	68.68	6.82
40		(+ve)	40.7	00.00	0.00
	mid	(-ve)	-5.93	36.99	6.32

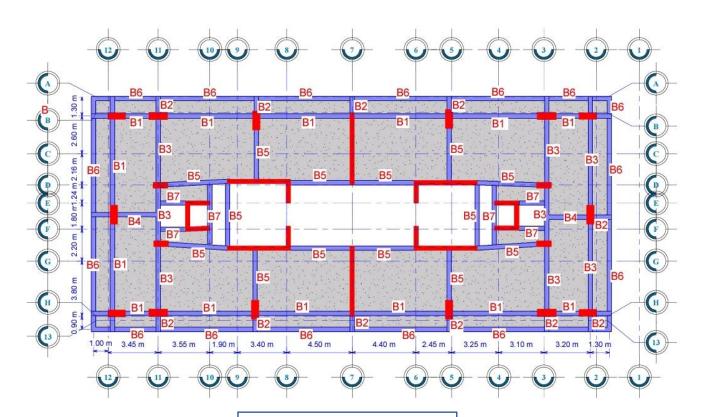
		(+ve)	13.84			
		(-ve)	-46.91	500	2.22	
	end	(+ve)	45.71	50.2	6.82	
		(-ve)	-74.54			
	beg	(+ve)	35.3	65.83	5.11	
		(-ve)	-3.62			
41	mid	(+ve)	26.23	17.73	15.15	
		(-ve)	-77.55			
	end	(+ve)	38.06	30.29	5.11	
		(-ve)	-114.57			
	beg	(+ve)	29.98	89.38	6.9	
			22 222			
42	mid	(-ve)	-6.98	11.04	4.84	
		(+ve)	77.32			
	end	(-ve)	-107.02	88.31	6.9	
		(+ve)	27.81			
	beg	(-ve)	-1.7	16.02	0	
	3	(+ve)	16.19		-	
43	mid	(-ve)	-6.29	12.7	0	
		(+ve)	28.08			
	end	(-ve)	-28.47	35.77	0	
	Cita	(+ve)	9.57	33.77	U	
	beg mid end	(-ve)	-37.62	45.59	7.53	
		(+ve)	17.33	40.00	7.55	
44		(-ve)	-2.46	11.00	2.61	
44		(+ve)	21.08	11.96	2.61	
		(-ve)	-50.33	24.2	7.50	
		(+ve)	19.31	31.3	7.53	
		(-ve)	-24.69	00.04	4.04	
	beg	(+ve)	12.69	38.34	4.91	
		(-ve)	-0.36			
45	mid	(+ve)	14.56	8.98	3.25	
		(-ve)	-22.77			
	end	(+ve)	12.81	19.1	4.91	
	12	(-ve)	-32.88	9	200	
	beg	(+ve)	13.51	43.41	3.09	
		(-ve)	-1.96			
46	mid	(+ve)	20.73	9.95	6.39	
		(+ve)	-45.65			
	end	(+ve)	15.29	33.48	3.09	
		(+ve)	-62.37			
	beg		26.7	60.78	8.3	
		(+ve)	(C-1657259V			
47	mid	(-ve)	-3.14	13.67	3.43	
		(+ve)	25.86			
	end	(-ve)	-65.3	33.81	8.3	
		(+ve)	28.66		0.3	
	beg	(-ve)	-126.29	103.29	1.36	
48		(+ve)	23.25			
	mid	(-ve)	-6.05	24.15	1.35	


		(+ve)	115.56		
		(-ve)	-133.89		
	end	(+ve)	18.46	138.72	1.36
		(-ve)	-60.09		
	beg	(+ve)	19.1	66.5	3.23
		(-ve)	-16.02		
49	mid	(+ve)	45.17	32.42	3.37
		-	-67.24		
	end	(-ve)	19.79	111.68	2.59
		(+ve)	-122.61		
	beg	(-ve) (+ve)	18.71	113.12	6.93
		, ,			
50	mid	(-ve)	-2.26	55.04	12.81
	è	(+ve)	32.69		
	end	(-ve)	-18.81	23.45	15.48
		(+ve)	130.7		
	beg	(-ve)	-16.05	26	11.43
		(+ve)	114.41		
51	mid	(-ve)	-1.4	65.31	6.94
VXX 101		(+ve)	26.33		
	end	(-ve)	-141.68	88.98	14.87
	0114	(+ve)	10.63		
	beg	(-ve)	-98.59	80.61	7.85
	3	(+ve)	21.79		
52	mid end	(-ve)	-14.09	52.88	7.85
		(+ve)	3.01		
		(-ve)	-34.78	23.81	14.6
		(+ve)	45.65		
	beg	(-ve)	-42.16	52.23	8.58
		(+ve)	23.94	0220	0.00
53	mid	(-ve)	-3.75	20.92	7.44
	11110	(+ve)	15.44	20102	7111
	end	(-ve)	-31.65	37.66	8.58
	Ond	(+ve)	25.67	07.00	0.00
	beg	(-ve)	-153.47	129.92	5.88
	Jog	(+ve)	81.33	120.02	0.00
54	mid	(-ve)	-1.87	47.85	7.37
07	mu	(+ve)	51.77	47.00	7.57
	end	(-ve)	-151.16	103.25	5.88
	Citu	(+ve)	75.93	100.20	3.00
	beg	(-ve)	-108.53	102.59	18.06
	beg	(+ve)	93.87	102.33	10.00
55	mid	(-ve)	-0.49	76.2	9.65
33	mid	(+ve)	10.06	70.2	9.00
	ond	(-ve)	-101.83	01 10	10.00
	end	(+ve)	96.07	91.19	18.06
	hoa	(-ve)	-89.86	E0.00	11 1
56	beg	(+ve)	89.92	59.96	11.1
	mid	(-ve)	-15.58	54.6	11.1

		(+ve)	26.1			
	end	(-ve)	-93.61	32.69	5.79	
	ena	(+ve)	44.84	32.09	5.79	
	hoa	(-ve)	-55.91	E7 C	4 20	
	beg	(+ve)	9.41	57.6	4.28	
E 7	mid	(-ve)	-23.93	22.52	7.40	
57	mid	(+ve)	28.91	22.52	7.49	
		(-ve)	-51.14	25.42	7.40	
	end	(+ve)	56.33	35.13	7.49	


♦ اظهرنا النتائج من الروبوت وصممنا بقية الجسور على الروبوت و التشييك عليها في شرائح الاكسل.

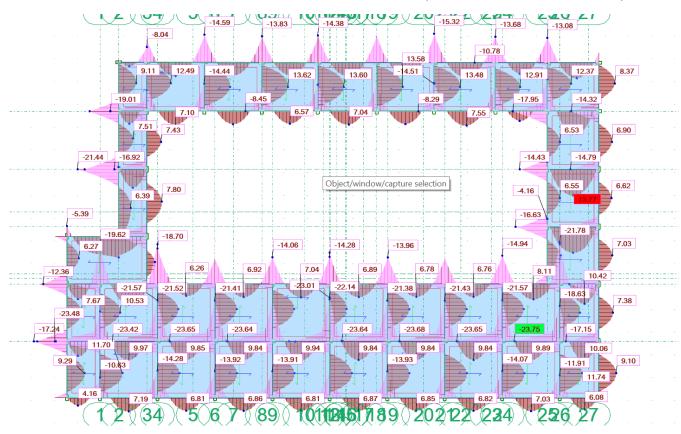
بلان العزوم على الجسور من الروبوت

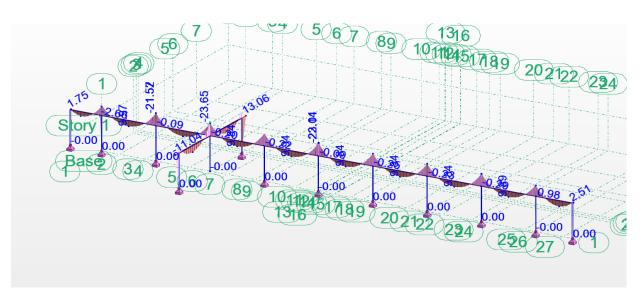


بلان القص على الجسور من الروبوت

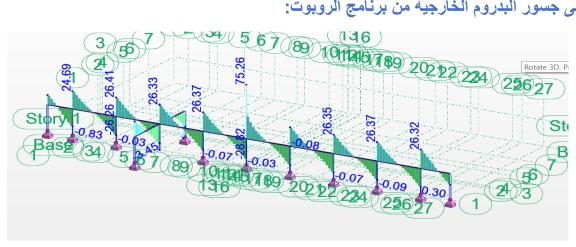
• ملاحظة:

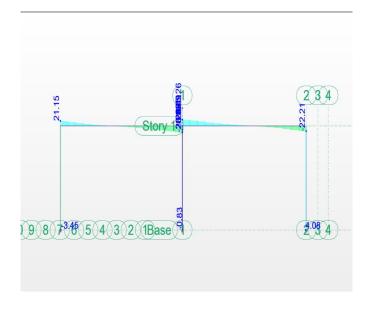
التورشن على الجسور صغيرة جداً لان الجسور في هذا المشروع منتظمة ولا يوجد عليها تورشن.

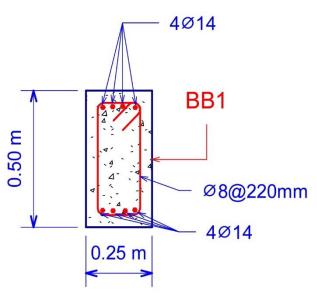

لجسور	ات ا	و با	قر	رن	يلا
)) .		•	/	$\mathbf{\mathcal{L}}$	- •


Baarra	Sec (cm)	Dootonoo	0 - To-	A. Dottom	Transversal As
Beams	В	h	Destance	As Top	As Bottom	(mm)
			beg	7 Ø 18	3 Ø 18	144
B1	30	70	mid	3 Ø 18	5 Ø 18	205
			end	7 Ø 18	3 Ø 18	144
			beg	4 Ø 18	3 Ø 18	144
B2	30	70	mid	3 Ø 18	3 Ø 18	160
			end	3 Ø 18	3 Ø 18	144
			beg	3 Ø 18	4 Ø 18	144
B 3	30	70	mid	3 Ø 18	5 Ø 18	205
			end	7 Ø 18	3 Ø 18	144
			beg	6 Ø 18	3 Ø 18	170
B4	30	70	mid	3 Ø 18	3 Ø 18	250
			end	3 Ø 18	5 Ø 18	180
			beg	3 Ø 18	3 Ø 18	200
B 5	30	70	mid	3 Ø 18	3 Ø 18	300
			end	3 Ø 18	3 Ø 18	200
			beg	5 Ø 18	3 Ø 18	144
B 6	30	50	mid	3 Ø 18	4 Ø 18	155
			end	5 Ø 18	3 Ø 18	144
			beg	3 Ø 18	3 Ø 18	200
B7	30	50	mid	3 Ø 18	3 Ø 18	300
			end	3 Ø 18	3 Ø 18	200

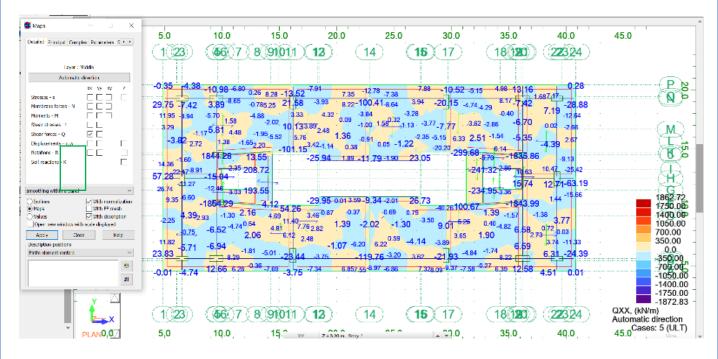
جدول تسليح قروبات الجسور من الروبوت

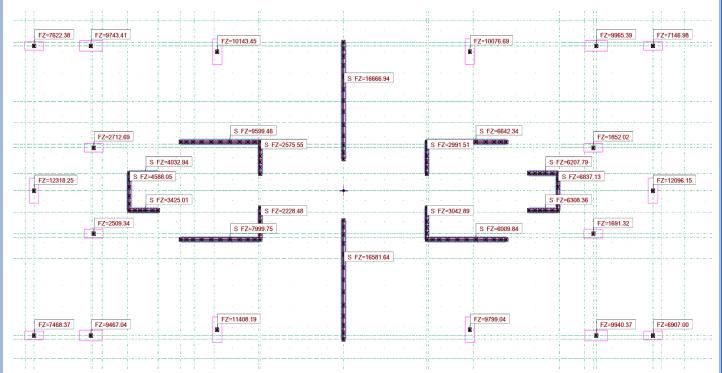

♦ تصميم جسور البدروم الخارجية (الحوش):


بلان العزوم على الجسور الخارجية للبدروم من الروبوت:



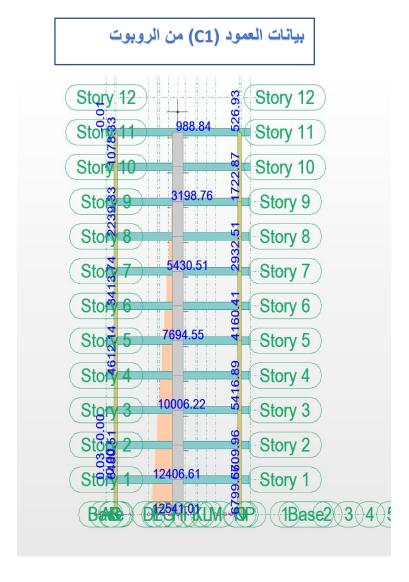
القص على جسور البدروم الخارجية من برنامج الروبوت:


حل اليدوي	جدول تسليح جميع جسور البدروم الخارجية من برنامج الروبوت وتم التأكد منها بالحل اليدوي (كون الاحمال و العزوم عليها صغيرة min كان تسليحها كامل)								
Beam Mu (KN.m) Vu (KN) As B (mm) h (mm)									
BB1 Top -23.75 75 4 Ø 14 250 500 Ø8 @ 220									
	تم التصميم على اكبر عزم واكبر تورشن واكبر فص على الجسور وطلع التسليح AS min								


البابع السادس

3 Jac W

COLUMINS



ردود الأفعال على الاعمدة من برنامج الروبوت

نموذج لتصميم الاعمدة في مشروعنا (يدوي)

❖ Data-:

$$f_{c'} = 40 Mpa$$

$$f_y = 420 \, Mpa \, \& \, f_{yt} = 280 \, Mpa$$

❖ Section properties:-

- L = 3300mm
- b = 500mm
- h = 1300mm
- Cover of concrete = 40 mm
- Assume $\emptyset = 22mm$ and $\emptyset s = 10mm$

Story	Name	Forces and moment				
8	C 1	P_u (k	12406.6			
		M (VN m)	M_y	758		
		$M_u(KN.m)$	M_z	1159		
		V (VAI)	V_{ub}	121		
		V_u (KN)	V_{uh}	527		

❖ Check for - column :-

$$\frac{Mz}{P_u} \le 0.1H$$

$$\frac{My}{P_u} = \frac{758 * 1000}{12406.6} = 61.1 \, mm < 0.1 * 1300 = 130 \, mm$$

$$\frac{Mz}{P_u} = \frac{1159 * 1000}{12406.6} = 93.4 \ mm > 0.1 * 500 = 50 \ mm$$

so it is beam – column

❖ Check slenderness :-

$$\frac{kl_u}{r} \le 34 - \frac{12M_1}{M_2} < 40$$

 $where: - M_2 = 758 \, KN.m$, and

$$M_1 = 1159 \, KN. \, m$$

$$r = 0.3h = 0.3 * 500 = 0.15$$
, and $k = 1$, and $l_u = 3.3m$

$$\frac{kl_u}{r} = \frac{1 * 3.3}{0.15} = 7.59$$

$$34 - \frac{12 * 542.6}{585.4} = 22.9$$

7.59 < 22.9 < 40 so it is short column

* Design:

$$Pu_{max} = \emptyset \times 0.8(0.85 \times fc'(Ag - As) + fy \times As$$

Assume minimum reinforcement, $\rho = 0.0$ so

$$As = 0.01 * 500 * 1300 = 6500 mm2$$

 \emptyset for compression = 0.65

$$Pu_{max} = 0.65 \times 0.8(0.85 \times 40(500 \times 1300 - 6500) + 420 \times 6500) \times 10^{-3}$$

= 12796.6KN

 $Pu < Pumax then use \rho = \rho min$

$$\gamma = \frac{h - 2c.c}{h} = \frac{500 + 2(-40 - 22 - 10)}{500} = 0.71$$

$$Pn = \frac{12406.6}{0.65} = 19087KN$$

$$Pn = \frac{12406.6}{0.65} = 19087KN$$

$$Kn = \frac{Pn}{fc'bh} = \frac{19087 \times 10^3}{40 \times 1300 \times 500} = 0.734$$

$$Rn = Kn \times \frac{e}{h} = 0.734 \times \frac{93.4}{500} \cdot 0.137$$

From interaction diagram:

8

ACI DESIGN HANDBOOK-SP-17M(09)

COLUMNS 3.5.2 - Nominal load-moment strength interaction diagram, R65-520.7

$$\rho=1\%$$

$$As=6500~mm2$$

$$As=\frac{6500}{\frac{3.14}{4}\times22^2}=18~\text{Ø}22~\text{, 6 for each side}$$

❖ Check of spacing :-

$$S = \frac{h-2*c.c-2*dbt-n*db}{n-1} \ge \begin{cases} 40mm \\ 1.5mm db size \\ \frac{4}{3} ma aggregate size \end{cases}$$

$$S = \frac{500-2*40-2*10-6*22}{6-1} = 236.4 \ge \begin{cases} 40mm \\ 1.5*22 = 33mm \\ \frac{4}{3}*25 = 33.3mm \end{cases}$$
 OK

9 BER SIDE S = 137.25

$$0.1 \times fc' \times Ag = 0.1 \times 40 \times 1300 \times 500 = 2600000N = 2600KN$$

Pu=12406.6KN>2600(limit), the member will act as a beam-column with the effect of axial load included .

For Mb = 1159KN.m

$$h = 1300mm$$
 , $b = 500mm$, $d' = 40 + 10 + rac{22}{2} = 61mm$

$$d = 500 - 61 = 439mm$$
 , $d'' = \frac{500}{2} - 61 = 189mm$

$$As = As' = 10\emptyset22 = 3801.3mm^2$$

$$e_x = \frac{My}{p} = \frac{1159 * 10^3}{12406.6} = 93mm < d = 436mm$$

Find Cd:-

$$C_b = \frac{600 \times d}{600 \times fy} = \frac{600 \times 439}{600 \times 420} = 1.04$$

Find Ab

Check:
$$fs' = 600 \times \left(\frac{c - d'}{c}\right) = 600 \times \left(\frac{233.6 - 61}{233.6}\right) = 443.32 Map$$

Since fs' > fy, use fs' = 443.32 Mpa

Calculate (eb) to know if tension controls or compression controls. In order to simplify the solution, the steel bars on the other faces will be ignored.

$$\begin{split} P_b &= 0.85 fc' \times a \times b + As'(fy - 0.85 \times fc') - As \times fy \\ P_b &= 0.85 \times 40 \times 233.6 \times 0.85 \times 1300 + 2600 \times (420 - 0.85 \times 40) \\ &- 5541.8 \times 420) \times 10^{-3} = 7452.4 KN \end{split}$$

$$Mb = Cc\left(\frac{d-a}{2}+d''\right)+Cs(d-d'-d'')+T\times d''$$

$$Cc = 0.85 \times fc' \times a \times b = 0.85 \times 40 \times 198.5 \times 1300 = 8773700N$$

$$T = As \times fy = 3801.32 \times 420 = 1596546N$$

$$Cs = As' \times (fy - 0.85fc') = 3801.3 \times (420 - 0.85 \times 40) = 1467301.8N$$

$$\begin{aligned} \textit{Mb} &= \left\{ 8773700 \times \left(\frac{436 - 198.5}{2} + 186 \right) + 1596546(436 - 61 - 186) \right. \\ &+ 1467301.8 \times 186 \right\} \times 10^{-6} = 3248.4 \textit{KN.m} \end{aligned}$$

$$E = \frac{3248.4 \times 10^3}{7452.4} = 435.9 mm > e = 53 So$$
, Compression Controls

Assume compression controls, and assume compression steel yield (fs'=fy). We can use the cubic equation found as follow:-

$$Aa3 + Ba2 + Ca + D = 0$$
, where :-

$$A = \frac{0.85Fc'b}{2} = \frac{0.85*40*1300}{2} = 22100$$

$$\beta = 0.85 \times fc' \times b \times \left(e - \frac{h}{2}\right) = 0.85 \times 40 \times 1300 \times \left(53 - \frac{500}{2}\right) = -8707400$$

$$C = As' \times (fy - 0.85 \times fc') \times \left(e + \frac{h}{2} - d\right) + 600 \times As \times \left(e + \frac{h}{2} - d'\right)$$

$$C = 3801.3 \times (420 - 0.85 \times 40) \times \left(51 + \frac{500}{2} - 436\right) + 600 \times 5541.8 \times \left(53 + \frac{500}{2} - 61\right) = 515886162$$

$$D = -600 \times As \times \left(e + \frac{h}{2} - d'\right) \times \beta \times d$$

$$D = -600 \times 3801.3 \times \left(51 + \frac{500}{2} - 61\right) \times 0.85 \times 436 = -2.9574591552 \times 10^{11}$$

Applying in the equation :-

$$22100 \times a_3 - 8707400 \times a_2 + 515886162 \times a - 2.9574591552 \times 10^{11} = 0$$

A= 430 after trial a = 411.34

C= 483.9mm.

(steel on both faces under compressive stress)

Check yielding of As' steel as assumed:-

$$As: fs = 600 \times \left(\frac{d-c}{c}\right) = 600 \times \left(\frac{431-483.9}{483.9}\right) = -65.6 Mpa$$

It means that steel here does not work as tension, but it works as compression.

$$As': fs' = 600 \times \left(\frac{c-d'}{c}\right) = 600 \times \left(\frac{483.9 - 61}{483.9}\right) = 524.4 Mpa$$

Note that fs' > fy, so use fs' = fy = 420 Mpa as assumed

Now,
$$Pn = Cc + Cs - t$$

$$Cc = 0.85 \times fc' \times a \times b = 0.85 \times 40 \times 411.34 \times 1300 = 4545307N$$

$$Cs = As' \times (fy - 0.85fc') = 5541 \times (420 - 0.85 \times 40) = 2138826N$$

$$T = As \times fs = 3801.3 \times -59.4 = -225797.22N$$

$$\textit{Now}$$
 , $\textit{Pn}_{x} = 4545307 + 2138826 - (-59.4) = 33346.882\textit{KN}$

$$Mu = 33346.882 \times 53 \times 10^{-3} = 1767.4$$

$$\emptyset Pn = 0.65 \times 33346.9 = 21675.5KN$$

$$\emptyset Pn > Pu \dots mit's ok$$

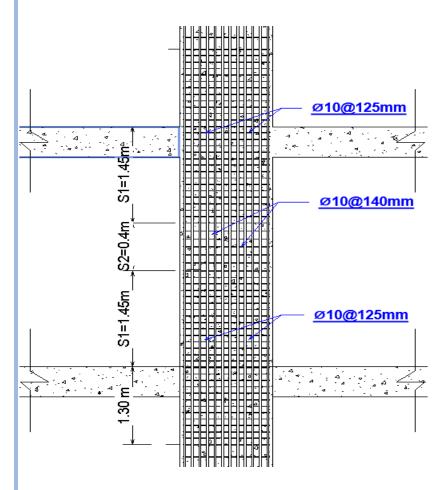
Design for shear :-

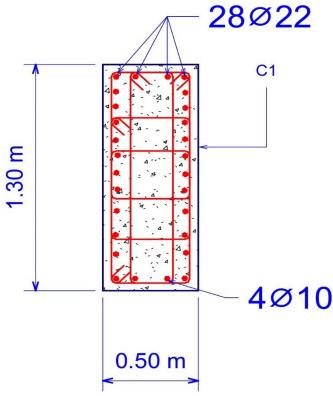
$$VC = (1 + 0.07 * \left(\frac{Pu}{Aa}\right))(\frac{\sqrt{fc'}}{6} * bw * d)$$

$$VC = \left(1 + 0.07 * \left(\frac{12406.6kN * 1000}{500 * 1300}\right)\right) \left(\frac{\sqrt{40}}{6} * 1300 * 1478\right) * 10^{-3} = 4731.4kN$$

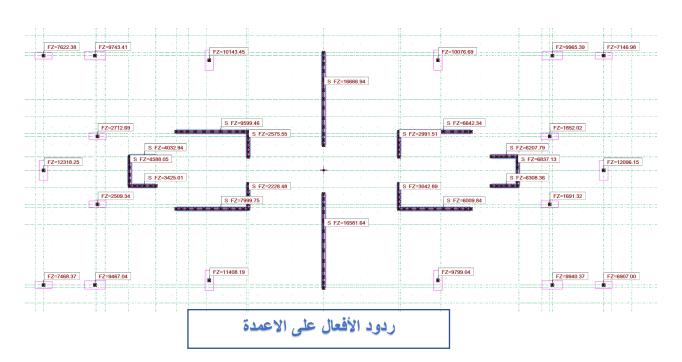
Moreover: $\phi Vc = 0.75 * 4731.4 = 3548.55KN > Vu = 121KN$

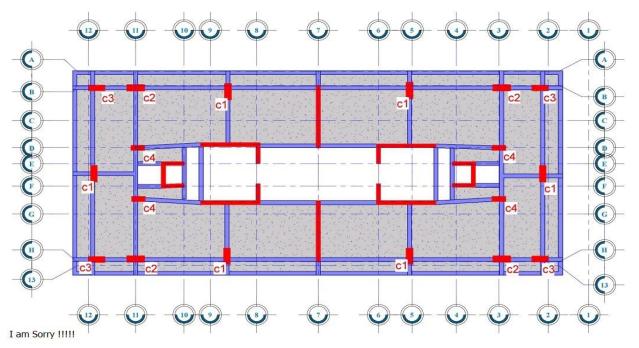
Use minimum ties as required


♦ المنطقة الحرجة حسب الاشتراطات الزلزالية:-


$$L_{o} = (max \, of) \begin{cases} \frac{L}{6} \\ h \\ 450 \, mm \end{cases} = (max \, of) \begin{cases} \frac{3300}{6} = 550 \, mm \\ 1300 mm \\ 450 \, mm \end{cases}$$

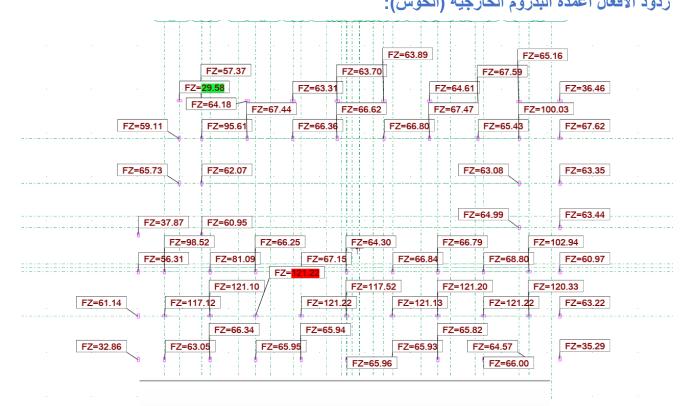
Therefore, $L_o = 1300 \, mm$

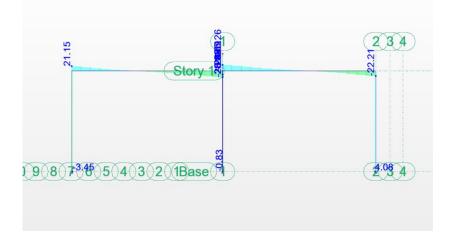

$$Smin = (min\,of) egin{cases} b/4 \ 5\emptyset \ = (min\,of) \ S_o \ \end{cases} egin{cases} 500/4 \ = 125mm \ 5*22 \ = 110\ mm \ 150\ mm \end{cases}$$


Therefore, S = 125 mm

❖ تم عرض نتائج تحليل جميع الاعمدة من برنامج الروبوت وتم تصميمها في برنامج الروبوت والتشييك عليها
 في شرائح الاكسل:

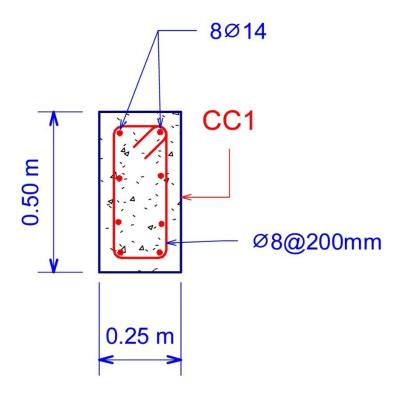
بلان قروبات الاعمدة


			В		H		Му	N	Qy	Qz	Mz	
C1	2	7804	21T22	5232	14T22	25+4*1.00+	-1159.05	12664.15	121.38	-527.72	758.3	4T10 7@46
C2	1396	3178	9T22	8639	23T22	25+4*1.00+	-292.86	9870.97	339.03	-409.47	1229.01	4T10 7@46
C3	1	3313	9T22	10741	29T22	25+4*1.00+	-298.95	8186.48	336.34	112.31	799.51	4T10 5@58
C4	3	634	2T22	1366	4T22	0.85+32*1.	-843.23	2277.62	43.76	317.06	243.9	4T10 5@58


جدول بيانات تحليل قروبات الاعمدة من برنامج الروبوت

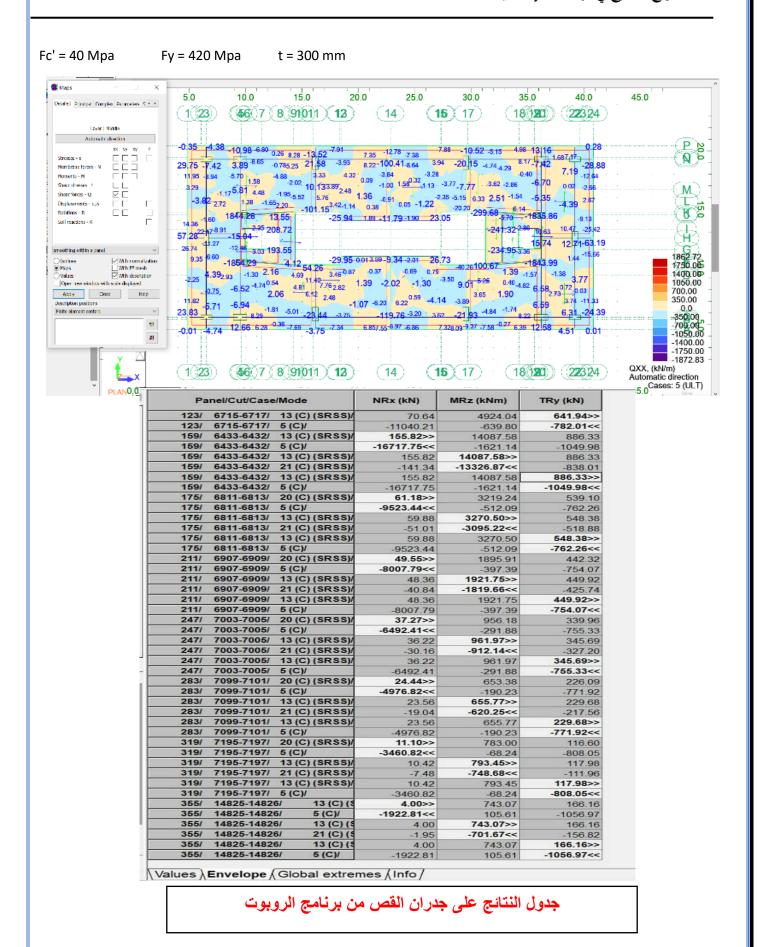
Fc' = 4	0 Mpa	Fy = 420	Ø 22			
		Fy = 280	Ø 10			
Column	B (cm)	L (cm)	H (m)	As (L)	As (B)	S (mm)
C1	500	1300	3.2	12 Ø 22	4 Ø 22	176
C2	500	1300	3.2	16 Ø 22	4 Ø 22	154
C3	450	1200	3.2	10 Ø 22	4 Ø 22	176
C4	400	1000	3.2	7 Ø 22	3 Ø 22	176

جدول تصميم قروبات الاعمدة من برنامج الروبوت


❖ تصميم أعمدة البدروم الخارجية (الحوش): ردود الأفعال أعمدة البدروم الخارجية (الحوش):

تم اخذ قيم النتائج الكبرى (عزوم - تورشن - حمل) من برنامج الروبوت فكان تصميمها مينيمم (ASmin)

حل اليدوي	جدول تسليح جميع أعمدة البدروم الخارجية من برنامج الروبوت وتم التأكد منها بالحل اليدوي							Мра		
	(كون الاحمال و العزوم عليها صغيرة min كان تسليحها كامل)						Fy= 280 Mpa			
Column	B (cm)	L (cm)	H (m)	As (L)	As (B)	S (mm)	Pu (KN)	Mu (KN.m)	Vu (KN)	Ø bar (mm)
CC1	250	500	3.2	4 Ø 14	2 Ø 14	176	121.22	14	5	Ø8 @ 200 mm
	تم التصميم على اكبر عزم واكبر تورشن واكبر حمل على الاعمدة وطلع التسليح AS min									



الباب السابع

جدرانالقص

SHEAR WALLS

نموذج لتصميم جدران القص في مشروعنا (يدوي)

Fc = 40 mpa

Fy = 420 mpa

Pu = 16717.75 Kn Vu = 1050 Kn M3 = 14088 Kn.m

Hw = 35200 mm Lw = 5500 mm Hw= 3200 mm Tw = 300 mm

1. Check

• Check $Vn < 0.85\sqrt{fc'} * h * d$

$$Vn = \frac{vu}{\emptyset} = \frac{1050}{0.75} = 1400 \ kn$$

$$0.66 * \sqrt{fc'} * h * d = 0.66 * (0.3 * 0.8 * 5.5 * 1000) \sqrt{40} = 5509.9 > Vn$$

المقطع مناسب

IF need one or two curtains:

Use tow curtains if $Vu > 0.17 \times Acv \times \sqrt{fc}$

$$1050 < (0.17) * 5500 * 300 * \sqrt{40} * 10^3 = 1774 \text{ kN}$$

But
$$T = 300 \, m$$

Design lateral force (shear design): -

Vc= 0.17 * Avc *
$$\sqrt{fc}$$
 = 0.17 * 10^{-3} *0.8* 5500 *300 * $\sqrt{40}$ = 1409.2 Kn

Horizontal reinforcement for middle

$$Vc = \frac{Vu}{\emptyset} = \frac{1050}{0.75} = 1400 \ kn$$

$$Sh = \frac{2*Av*fu*d}{Vs} = \frac{2*\pi*12*420*0.8*5500}{1400*1000} = 1194.3 \ mm$$

وتكون المسافة الأفقية بين الأسياخ:

Smax = min of
$$\begin{cases} \frac{Lw}{5} = \frac{5500}{5} = 1100mm \\ 3b = 3 * 300 = 900 mm \\ 450 mm \end{cases}$$

Check :p used :

$$\rho h = \frac{2*Av}{S*b} = \frac{2*0.25*12^2}{450*300} = 0.00167 < 0.0025 Ok$$

 $\rho h = used 0.0025$

$$0.0025 = \frac{2*0.25*12^2}{300*s} = S = 96 \text{ mm use } \emptyset 12 \text{ / face}$$

التأكد من مقاومة القطاع بعد عملية التسليح

Check: Ø Vn > Vu:

Ø Vn = (ac *
$$\lambda$$
 * \sqrt{fC} + ρ * fy) Acv

 λ = 1.0 for Normal Reinforcement concrete .

ac = 0.25 for
$$\frac{Hw}{Lw}$$
 < 1.5

ac = 0.25 for
$$\frac{Hw}{Lw} < 2$$

$$\frac{Hw}{Lw} = \frac{35.2}{5.5} = 6.4 \ use \ ac = 0.17$$
 , $\emptyset = 0.75$

$$\emptyset \ \textit{Vn} = 0.75 * 300 * 5500 \ \left(\ 0.17 \ * 1.0 * \sqrt{40} \ + 0.0025 \ + 420 \ \right) * 10^{\text{T}} = 2629.9 \ \textit{kn} > \textit{Vn}$$

$$= 5509.9 kn Ok$$

Vertical reinforcement for middle:

$$\rho v = 0.0025 + 0.5 (2.5 - hw / Lw) (\rho h - 0.0025)$$

$$0.0025 + 0.5 (2.5 - 3.2 / 5.5) (0.0025 - 0.0025) = 0.0025 \rho h = 0.0025 \rightarrow Ok$$

Using Øbv = 12mm

$$S = \frac{2*Av}{\rho*b} = \frac{2*12^2 *0.25*\pi}{0.0025*300} = 301.5 \approx 300 \text{ mm}$$

Check Smax : - Smax = min of
$$\begin{cases} \frac{Lw}{5} = \frac{5500}{5} = 1100mm \\ 3b = 3 * 300 = 900 mm \\ 450 mm \end{cases}$$

Ues Ø12 @ 300 mm

Combined Axial and Moment design

Check Vu < 5Vc

5*0.17 * Acv *
$$\sqrt{f'c} = 5*0.17~(0.8*5.5*0.3*\sqrt{40}*1000 = `1$$

$$= 7096.1 > 1050 kn$$

$$e = \frac{Mu}{Pu} < 0.1 * Lw = \frac{14088}{16717.75} = 0.84269 < 0.1 * 5.5 = 0.5$$

- Find stresses at farthest fibers

if:
$$fc = \frac{P}{A} + \frac{M.y}{I} > 0.2$$
 $f'c$ use special boundry element.

$$fc = \frac{16717.75*10^3}{300*5500} + \frac{14088*10 * (\frac{5500}{2})}{(\frac{300*5500}{12})} = 19.4 mpa > 0.2 * 40 = 8 \rightarrow Ok$$

use special boundary element

Design for Flexure and Axial force:

$$Pn = \frac{Pu}{\emptyset} = \frac{16717.75 * 10^3}{0.65} = 25719.6 \text{ kn}$$

$$Mn = \frac{Mu}{\emptyset} = \frac{14088}{0.9} = 21673.8 \, kn$$

From interaction diagram:

$$\rho = 0.002$$

As =
$$\rho$$
 * h * b = 0.002 * 300 * 5500 = 3300

No of Bar =
$$\frac{As}{Ab} = \frac{3300}{\frac{\pi}{4} * 16^2} = 16.4 \approx 17 \approx 18$$
 bar Ues 18 Ø 16 / face

Boundary length:

$$L_{B} = \max \left\{ \frac{\frac{C}{2}}{2} \\ c - 0.1 Lw \right\}$$

$$C = \frac{a}{\beta} \qquad a = \frac{Pu + As * fy}{0.85 * fc' * bw} = \frac{16717.75 * 10^3 * 3619.1 * 420}{0.85 * 40 * 300} = 1788 \text{ mm}$$

$$C = \frac{a}{\beta} = \frac{1788}{0.85} = 2103.5 \, mm$$

$$\mathsf{L}_\mathsf{B} = \max \left\{ \frac{\frac{2003.5}{2} = 1051.75}{1051.75 - 0.1 * 5500 = 501.75 \ mm} \right.$$

Take LB 1051.75 mm

And (Lb (\max) = 0.25 * Lw

So use Lb = 0.25 *5500 = 1375 mm

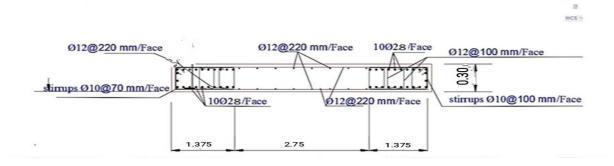
Transverse reinforcement:-

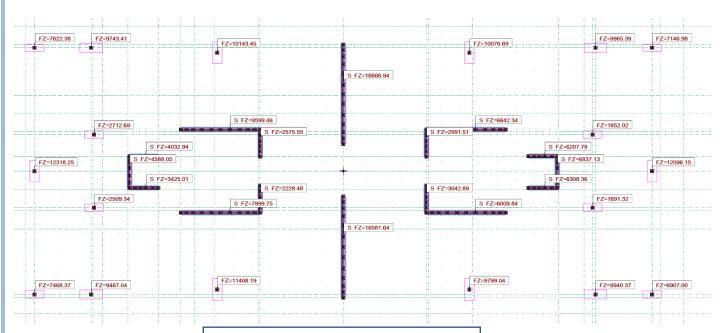
S = min of
$$\begin{cases} 6*Db = 6*16 = 96 mm \\ 0.25*t = 0.25*300 = 75 mm \end{cases}$$
 So S = 100 mm

So =
$$100 + \frac{350 - Hx}{3} < 150$$
 $Hx = \frac{c}{c}$ Between cross ties. asumm $hx = 150$

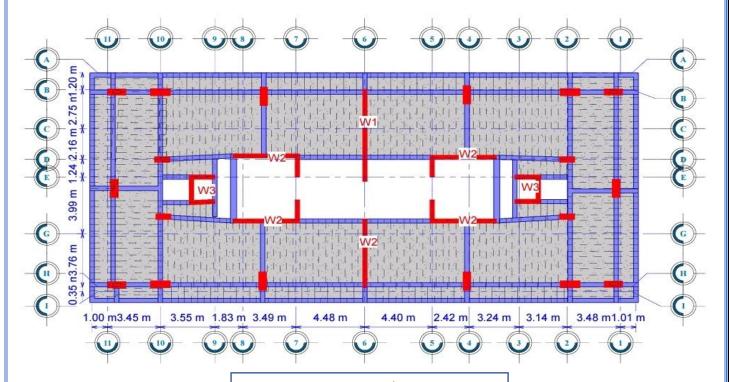
Use Ø 10 @ 100 mm

The minimum area of hoops As in Both direction of Boundaru Element section in transvers direction


Ash1 = **0.09** *s*bc1*
$$\frac{Fc'}{fy}$$
 = 0.09 * 100 (300 - 40) $\frac{40}{420}$ =222.8 mm² Use 3 Ø 10 need cross tie.


Use 1 Ø 10 stirrup & 4 Ø 12 cross tie.

In longitudinal direction


Ash2 = 0.09 * S*(Lb - C)
$$\frac{Fc'}{Fy}$$
 = 0.09 * 100 (1501.75 -40) * $\frac{40}{420}$ = 867.2 mm²

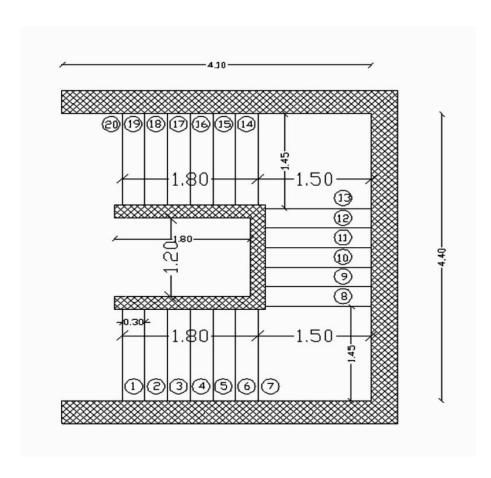
Ues 12 Ø 10

ربود الأفعال على جدران القص

بلان جدران قروبات جدران القص

input	S															
fc=	40	Мра														
fy=	420	Мра														
bar diameter db:																
vertical center=	12	mm														
horizantal=	12	mm														
hoops=	10	mm														
		wall No	story NO	(thick) mi	(length)r	ry height(r	Il height(n	H/face	V/fase	الكاتات	Lb(mm)	Bb(mm)	Boundary	S (mm)	use As (long)	use As (trans)
		W1	1	300	5500	3200	35200	Ø12/300 mm	Ø12/300 mm	Ø10	1100	300	20Ø25	75	1Ø10	9Ø10
		W2	1	300	4300	3200	38400	Ø12/300 mm	Ø12/300 mm	Ø10	850	300	10Ø25	200	1Ø10	3Ø10
		W3	1	300	1900	3200	38400	Ø12/300 mm	Ø12/300 mm	Ø10	380	300	4Ø22	75	1Ø10	3Ø10

جبول تسليح قرويات جبران القص من برنامج الرويوت


الباب الثامن

STAIRS

- السلالم في هذا المشروع هي عبارة عن سلالم ذو ثلاث قلبات، مسنودة على جدران القص، ومنسوب الدور (3.2 m) مقسم على الثلاث القلبات بالتساوي.
 - وقد تم تحليل وتصميم السلالم في برنامج الروبوت وشرائح الاكسل، وسيتم عرض النتائج و التصميم اسفل:

Number of rises
$$=$$
 $\frac{3.2}{0.16} = 20$

Number of rises for one flight = $\frac{20}{3}$ = 6 < 12 OK

Minimum thickness= $\frac{L}{20} = \frac{4}{20} = 0.20$ m

assume thickness(ts) = 200 mm

$$\theta = \tan^{-1}(160/300) = 28.07^{\circ}$$

أولاً: الاحمال على القلبة (Flight)

Own weight of the flight $=\frac{t*\gamma c}{cos\theta} = \frac{0.2*25}{cos\ 26.57} = 5.6\ kN/m^2$

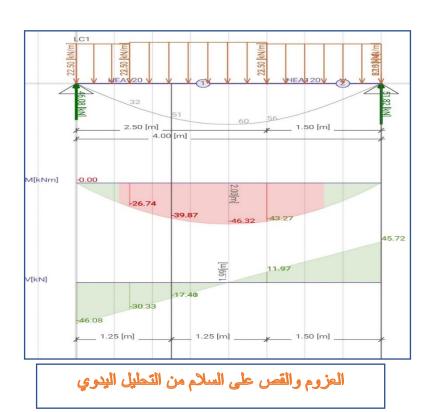
Finishing Load: $2 kN/m^2$

Live Load: $4.79 \, kN/m^2$

ثانياً: الاحمال على البسطة (Landing)


Own weight of the landing = $t * \gamma c = 0.2 * 25 = 5 kN/m^2$

Finishing Load: $2 kN/m^2$


Live Load: $4.79 \, kN/m^2$

تراكيب الاحمال:

$$Wu(Flight) = (1.2DL + 1.6LL) = (1.2 * (5.6 + 2) + 1.6 * 4.79)$$

= $16.78 \frac{kN}{m^2}$ >>> $16.78 * 1.4 = 23.5 kN \mbox{m}$
 $Wu(Landing) = (1.2DL + 1.6LL) = (1.2 * (5 + 2) + 1.6 * 4.79)$
= $16.1 \frac{kN}{m^2}$ >>> $16.1 * 1.4 = 22.5 kN \mbox{m}$

العزم على السلام من برنامج الروبوت

Mu = 46.22 kN.m

Vu = 46.08 kN

Design of Reinforcement:

Reinforcement in the main direction (long):

$$Mu = \phi * fy * As * \left(d - \frac{As * fy}{1.7 * f'c * b}\right)$$

$$46.32 * 10^6 = 0.9 * 280 * As * \left(172 - \frac{As * 280}{1.7 * 30 * 1400}\right) \rightarrow As = 1096 \ mm^2$$

$$Asmin = 0.0018 * b * t = 0.0018 * 1000 * 200 = 360mm^2$$
Use 6Ø16

$$S = \frac{140 - 6 * 1.6}{6 - 1} = 26 \text{ cm}.$$

Check Maximum Spacing:

$$S_{max}=3*t=3*20=60$$
 cm.

 $S < S_{max}$ Use $6\emptyset 16 @ 26 cm$.

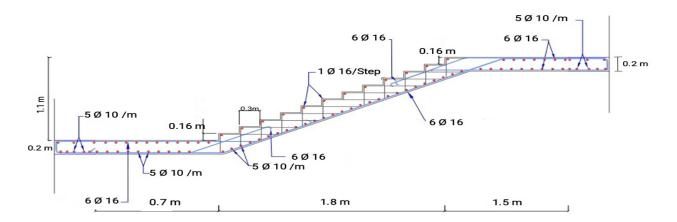
Reinforcement in the short direction:

$$A'_{s} > {20\% A_{s} \atop 0.0018 \times bh} = {0.0018 \times 1000 \times 200} = 360 \text{ mm}^{2}$$

$$0.2 \times 1096 = 219.2 \text{ mm}$$
2

$$\therefore AS_{min} = 360 \text{ mm}^2 \text{ Use } 50/\text{m}'$$

$$S = \frac{100-5*1}{5-1} = 23.75 \text{ cm} < S_{max} \text{ use } 1\emptyset 10 @ 23.75 \text{ cm}.$$


Check Shear:

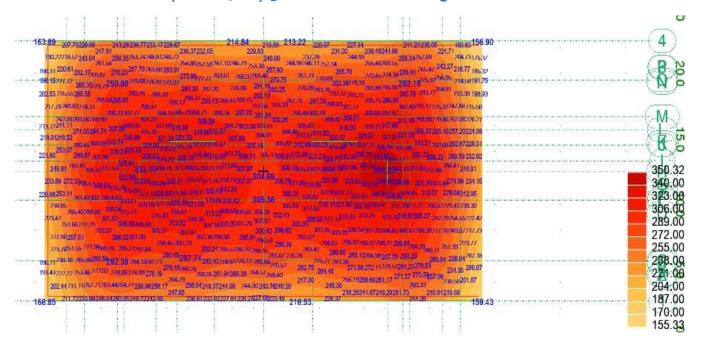
$$Vu = 46.08 \text{ kN}$$

$$\emptyset Vc = \emptyset \times 0.17 \times \sqrt{Fc'} \times b \times d = 0.75 \times 0.17 \times \sqrt{30} \times 1000 \times 172 \times 10^{-3} = 120.12 \text{ kN}$$

ØVc > Vu Ok The shear is safe.

	تسليح السلالم	
	التسليح الطولي	التسليح العرضي
البسطة	6 Ø 16	5 Ø 10
الشاحط	6 Ø 16	5 Ø 10

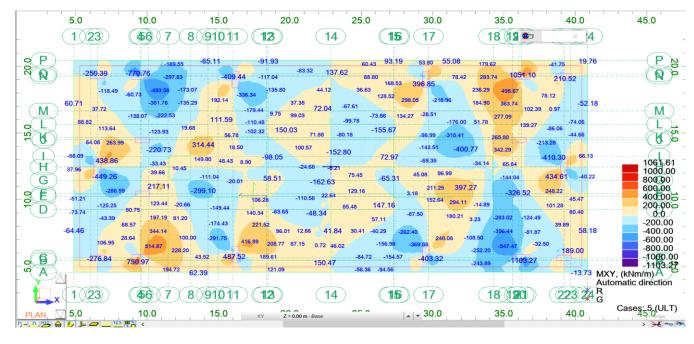
تم تحليل وتصميم قلبة واحدة وتم التعميم للقلبتين الاخرات كونهن نفس الابعاد والاحمال.

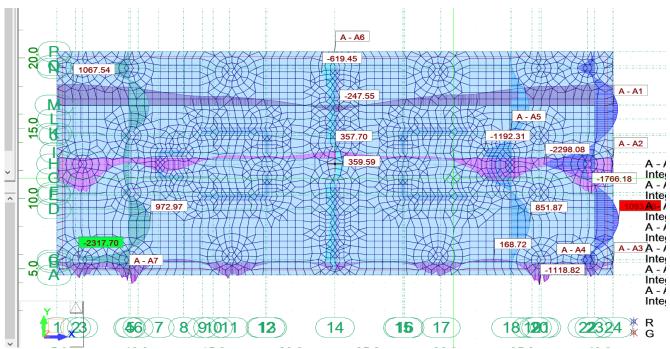

الباب التاسع

الاساسات (اللبشة)

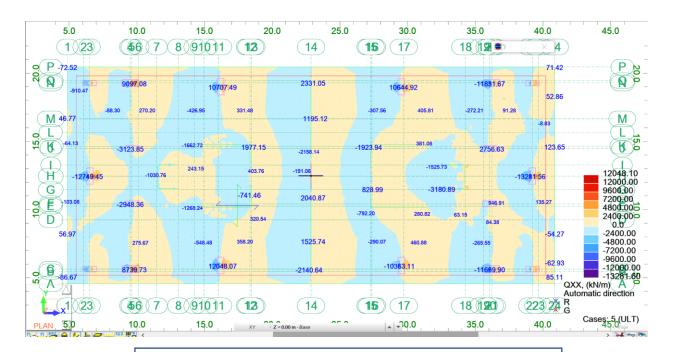
FOUNDATIONS

- قمنا بعمل لبشة أساس تحت البرج بسماكة (t = 1 m) وقمنا باخراجها خارج حدود البرج (الرفرفة) بمسافة (1 m).
 - Fc' = 40 Mpa, Fy = 420 Mpa, $t = 1 \, \text{m}$, Sc (تصنیف التربة) = "C", (مقاومة التربة) = 300 kN/m²
 - قمنا بعمل معالجة للتربة ودكها لرفع مقاومة التربة حتا تصل الى (350 kN/m²).

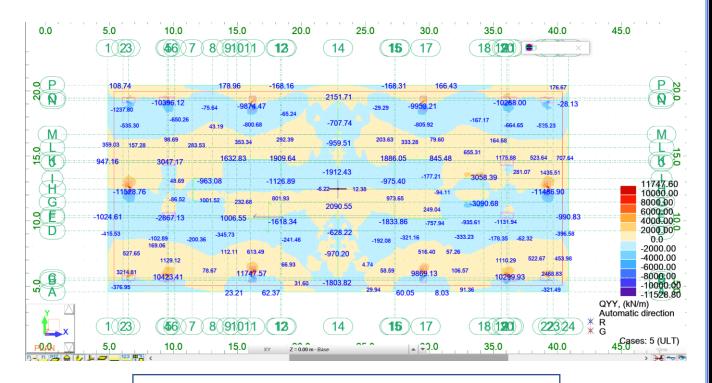



بلان الاحمال (ردود الافعال) على اللبشة من برنامج الروبوت

نلاحظ:


ان الاحمال على اللبشة الموزعة اقل من مقاومة التربة، بمعنا ان اللبشة والتربة مشيكة لتحمل الاحمال. ملاحظة:

عند اجراء الاختبار على التربة لمعرفة مقاومتها يؤخذ معامل الأمان 3 ، أي ان التربة التي مقاومتها تساوي ٢٥٠ فان مقاومتها في الواقع يساوي ٢٥٠ * ٣ = ٧٥٠



بلان العزوم على اللبشة من برنامج الروبوت

بلان القص على اللبشة على محور (X) من برنامج الروبوت

بلان القص على اللبشة على محور (٧) من برنامج الروبوت

-32.50

18 (1901)

-900.00 -900.00 -1090.00 -1163.27 -1163.27 Automatic direction

Cases: 5 (ULT)

• قمنا باخذ اكبر حمولة على كل عمود من كل قروب من الاعمدة فكانت النتائج من برنامج الروبوت كما التالي:

	NAME	PKN	POSITION	b mm	h mm	t mm	d mm	bo mm	Фус1	Фус2	Фус3	Фус (КМ)	CHECK
C1	2/1/38 (C) (CQC)/	8950	EXTERIOR	500	1300	1000	934	7336	13868.1	16008	8973.5	8973.47	OK
C3	3/3/38 (C) (CQC)/	5655	EXTERIOR	450	1200	1000	934	7036	13301	15823.4	8606.5	8606.507	OK
C4	4/5/38 (C) (CQC)/	7368	EXTERIOR	800	800	1000	934	6936	13111.9	15761.8	8484.2	8484.186	OK

تصميم اللبشة على محور X DIRECTION

(15) (17)

| - | - 30.0

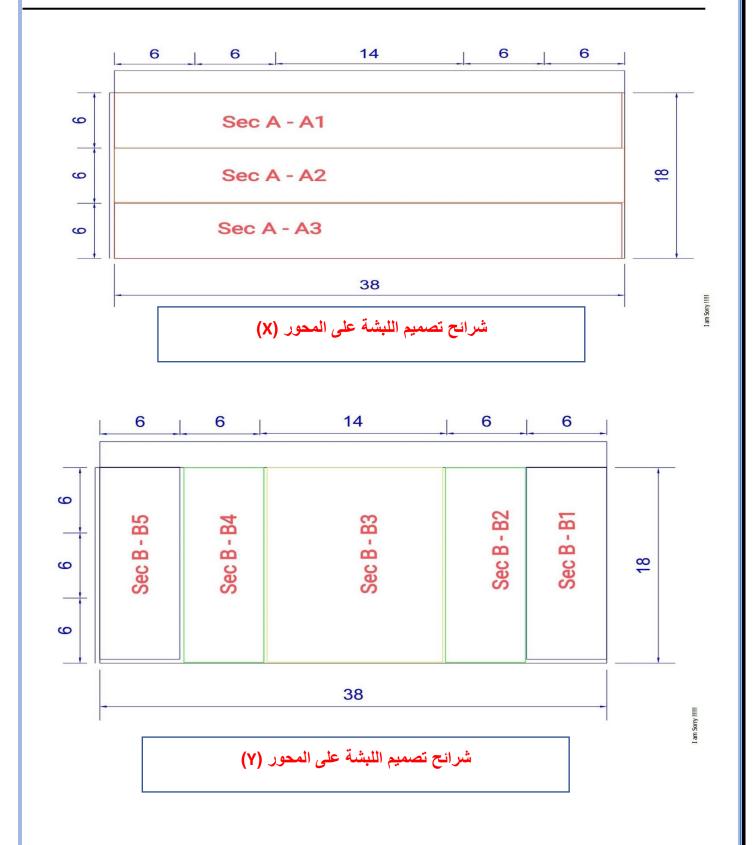
(14)

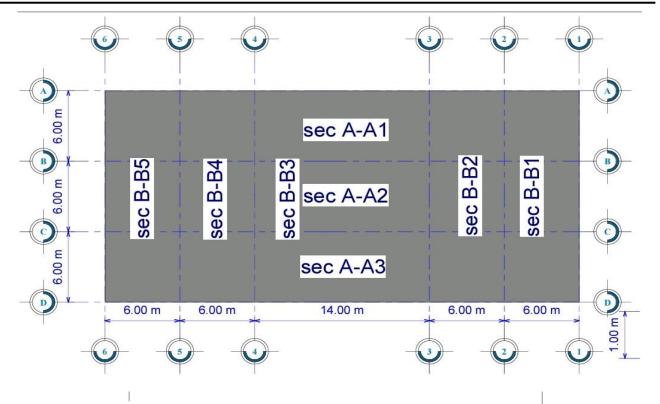
15.0 XY Z=0.00 m - Base

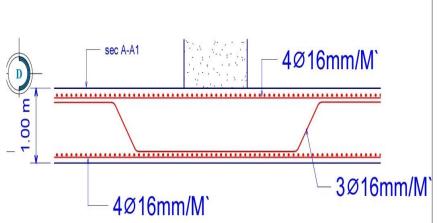
87 228.20 43.52 487

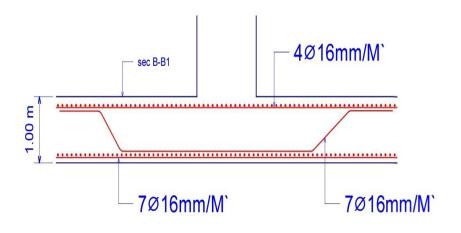
(56) 7 8 91011 **(12)**

o B

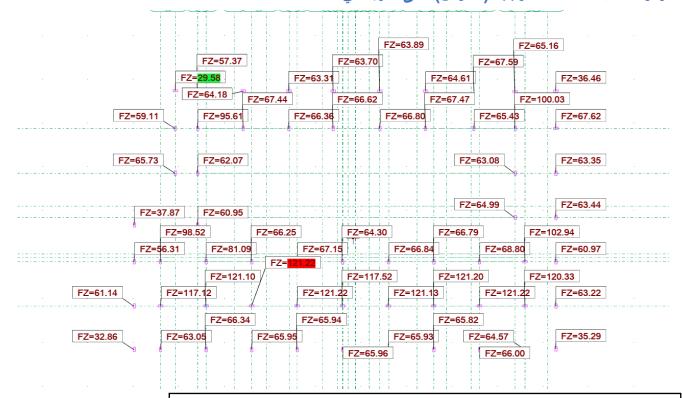

1 (23)

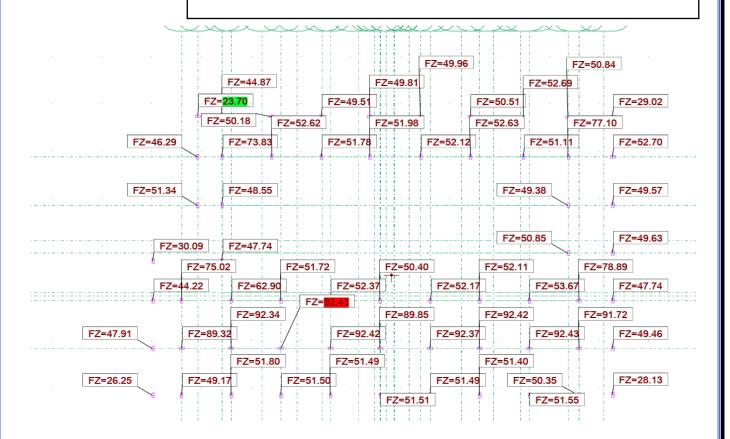

String	D /m)	Momen	t (kN/m)	No Of B	ars / (m)	REINFORCEMENT / STRIP / m		
Strips	B (m)	Top +	Bottum -	Top +	Bottum -	Top +	Bottum -	
A - A1 & A - A3	6	248	1068	4 Ф 16	7Ф16	Ф10@250mm	<u>Φ10@140mm</u>	
A - A2	6	358	1767	4Ф16	11 Ф 16	Ф10@250mm	Ф10@90mm	


تصميم اللبشة على محور Y DIRECTION


String	D /m)	Momen	t (kN/m)	No Of B	ars / (m)	REINFORCEMENT / STRIP / m			
Strips	B (m)	Top +	Bottum -	Top +	Bottum -	Top +	Bottum -		
B - B1 & B - B5	6	1094	2298	7Ф16	14 Ф 16	Ф10@140mm	Ф10@70mm		
B - B2 & B - B4	6	852	1192	5 Ф 16	8Ф16	Ф10@200mm	Ф10@120mm		
B - B3	14	360	620	4Ф16	4 Ф 16	Ф10@250mm	Ф10@250mm		

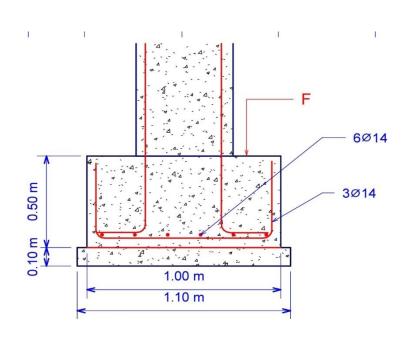
جدول تسليح اللبشة من برنامج الروبوت





❖ تصميم قواعد البدروم الخارجية (الحوش):

ردود افعال الأعمدة الخارجية (الحوش) على التربة في حالة ULT:



ردود افعال الأعمدة الخارجية (الحوش) على التربة في حالة Working:

تم اخذ قيم النتائج الكبرى (اكبر حمل) من برنامج الروبوت فكان تصميمها مينيمم (ASmin) وتم التعميم لبقية القواعد الخارجية.

				qa=	200	Кра			
Asmir	Asmin = 0.0018*d*1000		=797.4 mm2	fc=	25	Мра			
				fy=	280	Мра			
				cover=	5	cm			
facting NO	Column size		loads (KN)		thickness	footin	g size	A	S
footing NO	ℓ (m)	b (m)	Pa (Working)	Pu	(cm)	L (m)	B (m)	Longe	Short
F1	0.5	0.25	93	122	50	1	0.6	6 Ø 14	3 Ø 14

